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Introduction

This paper is numerical solution for optimal portfolio choice by the mean-variance approach.
Approach attempts to maximize portfolio expected return for a fixed amount of portfolio risk, or
equivalently minimize risk for a constant level of expected return, by thoroughly selecting the
proportions of different assets. Every combination of the risky assets, without including any
holdings of the risk-free asset, can be plotted in risk-expected return space. Ensuing hyperbola forms
the mean-variance frontier. The mean-variance frontier of a given set of assets is the boundary of the
set of means and variances of the returns on all portfolios of the given assets. Many asset pricing
propositions (e.g. CAPM) and test statistics are defined in terms of the mean-variance frontier.
Figure 1 displays a regular mean-variance frontier. It is conventional to distinguish the mean-
variance frontier of all risky assets, graphed as the hyperbolic region, and the mean-variance frontier
of all assets, i.e., a risk-free rate, which is the larger wedge-shaped region. Some authors reserve the
terminology ‘‘mean-variance frontier’> for the upper fragment, calling the whole graph the
minimum variance frontier. The risky asset frontier lies between two asymptotes, shown as dotted
lines. The risk-free rate conventionally is below the intersection of the asymptotes and the vertical
axis, or the point of minimum variance on the risky frontier. If it were above this point, investors
with a mean-variance objective would try to short the risky assets, which cannot represent an
equilibrium (we would actually observe it in this paper in the case of 100 stocks at a high rate of

risk aversion). In general,
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Data description

Ticker
Capitalization range: $7.737-$363.101, mil
PIMCO New York Municipal Income Fund PNF
American Strategic Income Portfolio 111 CSP
Dow 30 Premium DPD
Capitalization range: $1125.950-$3026.322, mil
Glimcher Realty Trust GRT
Newcastle Investment Corporation NCT
Industrias Bachoco, S.A. de C.V. IBA
Capitalization range: $3037.480-$430299.000, mil

Oracle Corporation ORCL
MetL.ife, Inc. MET
Enersis S A ENI

Table 1: Stocks used in calculation within given capitalization ranges
Source: NYSE

Table 1 gives ticker interpretation. Table 2 contains a sample statistic for nine listed stocks
from NYSE. Sample period is from January 1, 2009 until December 31, 2013. Individual stocks are
selected in the following manner. Three random tickets picked from first, third and fifth quintiles of
stocks ranged by market capitalization. Then the prices of these stocks examined on daily, weekly
and monthly horizons. In addition to the four first sample moments, the table reports Jarque-Bera
Statistic. Jarque-Bera statistics marked with asterisks are not statistically different from zero for
a=0.05, implying normality of given returns. None of stocks and indexes daily and weekly returns
exhibit normality. Meanwhile, four stocks were normally distributed monthly returns. The net
returns of IBA for both weekly and monthly frequencies had a moderate right skewness, so only log
returns were normally distributed as JB indicates. Table 2 reports both log returns along with net
returns because of testing for random walk 3 (RW3) hypothesis. Log returns are required to
maintain limited liability principle. The basic test for random walk employed in this paper is
variance ratio (VR) test. RW3 assumes that increments of the level of the random walk are
uncorrelated at all leads and lags. Therefore, we may test it by testing the null hypothesis that the
autocorrelation coefficients of the first-differences at various lags are zero. Variance ratio test can
identify if the variance in time-series grows faster or slower than linearly. Formulas for optimal
weights could be found by using brute-force Lagrangian approach. Out data is not normally
distributed that is why we have to use quadratic utility function. With quadratic utility function, the
higher order terms in Taylor approximation disappear. The limits of quadratic function is that it does

not work for all levels of wealth. For the purpose of this work, the wealth is normalized to 1.



Ticker

Mean

Standart

Skewness

Kurtosis

Jarque-Bera

Deviation Statistic
Daily Returns
Net | Log Net Log Net Log Net Log Net Log
PNF |0.001| 0.001 | 0.011 0.011 0.13 0.03 7.61 7.44 1118.28 |1034.25
CSP |0.000| 0.000 | 0.008 | 0.009 -0.56 | -0.74 15.33 15.83 | 8036.67 |8747.89
DPD [0.001| 0.000 | 0.014 | 0.014 -1.03 | -1.24 12.11 13.32 | 4571.07 |5910.44
GRT |0.002| 0.001 | 0.041 0.040 1.73 0.99 16.97 13.87 | 10862.07 | 6393.64
NCT [0.005| 0.002 | 0.068 | 0.065 2.47 0.95 24.02 17.18 | 24441.11 |10721.64
IBA [0.001| 0.001 | 0.024 | 0.023 2.25 1.08 46.56 | 31.79 |100531.35 |43685.55
ORCL|[0.001| 0.001 | 0.018 | 0.018 -0.21 | -041 8.31 8.75 1485.18 |1768.21
MET |0.001| 0.000 | 0.032 0.032 0.30 -0.34 14.18 14.47 | 6565.59 |6916.04
ENI |{0.000| 0.000 | 0.015 | 0.015 -1.03 | -0.40 12.11 7.97 929.70 |1328.98
Weekly Returns
Net | Log Net Log Net Log Net Log Net Log
PNF |0.003| 0.003 | 0.026 | 0.026 0.85 0.50 11.49 10.14 819.35 | 566.48
CSP |0.001| 0.001 | 0.017 0.017 -0.75 | -0.88 6.59 6.90 165.01 | 199.99
DPD [0.003| 0.002 | 0.030 | 0.030 -0.84 | -1.11 7.75 8.31 276.56 | 361.00
GRT |0.010| 0.006 | 0.091 0.087 1.54 0.54 11.68 8.70 925.65 | 367.29
NCT [0.021| 0.012 | 0.158 | 0.131 3.82 1.72 27.23 13.95 | 7042.59 |1437.67
IBA [0.005| 0.004 | 0.046 | 0.046 -0.25 | -0.53 5.00 5.56 46.22 84.20
ORCL [0.004| 0.003 | 0.037 0.037 -0.18 | -0.35 3.98 4.10 11.92 18.58
MET |0.004| 0.002 | 0.066 | 0.066 0.80 -0.40 14.38 13.33 | 1441.72 |1172.01
ENI |{0.002| 0.001 | 0.035 | 0.036 -0.07 | -0.30 5.00 5.47 43.91 70.21
Monthly Returns
Net Log Net Log Net Log Net Log Net Log
PNF |0.010| 0.009 | 0.046 | 0.046 0.43 0.26 3.66 3.46 2.91* 1.19*
CSP |0.004| 0.003 | 0.035 | 0.035 0.04 -0.16 4.86 4.75 8.69 7.95
DPD [0.012| 0.010 | 0.051 0.051 -0.62 | -0.86 4.46 4.83 9.16 15.66
GRT |0.044| 0.034 | 0.151 0.135 1.72 0.71 9.62 6.14 139.41 29.73
NCT [0.093| 0.058 | 0.315 | 0.241 2.64 0.90 12.44 7.04 292.41 48.97
IBA [0.024| 0.021 | 0.085 | 0.082 0.62 0.22 4.66 4.24 10.74 4.36*
ORCL [0.018| 0.015 | 0.077 0.076 0.08 -0.17 3.17 3.20 0.13* 0.39*
MET |0.019| 0.013 | 0.111 0.114 -0.28 | -0.94 4.54 6.11 6.67 32.97
ENI |{0.006| 0.004 | 0.073 | 0.073 0.19 -0.03 3.11 2.97 0.40* 0.01*

Table 2: Sample statistics

Asterisks indicate JB statistics that are not statistically different from 0 at 5% level of significance



Lagrangian characterization of mean-variance frontier

The optimal weights are given by

0—1 N ) 0—1
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where z; (j =1,...,N) and 7y are net returns.
For this optimal portfolio,
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Take some values of y and z (z = 1, e.g.) and substitute 0;1 from (10) (that is true for any portfolio p
including p*) into (2), solve (2) for E [z,+].
After finding E [2p+]. compute 9;1 in (10) and then wp+; and wp+o in (1) and 0. in (3), as well as

z : z(1+ E[5+)) |

= Wo (1+ E|zp+]) = > 0. (1)
y— Wy (1 + E [2p+]) ( ) y—z(1+ E[2:+])

Hence, for each pair of y and = 1, we have the associated portfolio and RRA (y,, E [2p+]). Choose the

portfolio that corresponds to your RRA (y,x, E [%+]) .

RRA (ya z, E [zP*])



Optimal portfolio of nine stocks and a risk-free asset under the assumption of random walk

Daily frequency

Before reporting the optimal weight and discuss the results we need to pick a coefficient of
relative risk aversion (RRA). RRA is a function of y, x and expected return of portfolio with optimal
weights. X is normalized to one, while expected returns is determined endogenously. Hence, by

changing variable y we can characterized RRA to differentiate investors given their attitude to risk.

E[Zp] o[Zp] Sharpe ratio RRA Y
0.0174 0.0032 5.438 5.570 1.2
0.0260 0.0071 3.662 3.745 1.3
0.0346 0.0126 2.746 2.832 1.4
0.0433 0.0197 2.198 2.284 1.5
0.0519 0.0284 1.827 1.919 1.6
0.0606 0.0387 1.566 1.659 1.7
0.0692 0.0505 1.370 1.463 1.8
0.0779 0.0640 1.217 1.311 1.9
0.0865 0.0790 1.095 1.189 2.0
0.0952 0.0956 0.996 1.090 2.1
0.1038 0.1137 0.913 1.007 2.2
0.1125 0.1335 0.843 0.937 2.3
0.1211 0.1548 0.782 0.877 2.4
0.1297 0.1777 0.730 0.825 2.5
0.1384 0.2022 0.684 0.779 2.6

Table 3: Coefficients of relative risk aversion for daily frequency

Important point here is that RRA is a relative characteristic not absolute, so that exact values
for RRA and Y are not important. We assume that our RRA is 2, or 1.919. That corresponds to
Sharp ratio of 1.827, which is quite realistic for typical daily trading. This attitude to risk gives the

following weights for assets.

CSP -19.5
DPD 8.0268
ENI -4.901
GRT 4.8544

IBA -13.3
MET 8.2058
NCT 5.0216
ORCL 9.9443
PNF 25.814

Risk Free: -23.2

Table 4: optimal weight for 9 risky and one risk-free assets on daily frequency with RRA 0.0519



As reported before the return for portfolio with this RRA is 0.0519, while standard deviation

is 0.0284. The interpretation of the weights is the following. Negative weight on risk free assets

means that we borrow at risk-free rate 23.2 times our initial wealth, or initial investment. Negative

weight on risky assets indicate that we sell it short: CSP is sold short 19.5 times the initial

investment and we do the same for ENI, 4.901 and IBA, 13.3 all times the initial investment.

Positive weight on risky assets indicate buying: DPD must be bought 8.0268 times the initial

investment, while GRT, 4.8544, MET, 8.2058, NCT, 5.0216, ORCL 9.9443 and PNF 25.814.

Weekly frequency
E[Zp] o[Zp] Sharpe ratio RRA Y
0.1700 0.0560 3.036 3.546 1.5
0.2379 0.1098 2.167 2.679 1.7
0.3059 0.1815 1.685 2.198 1.9
0.3738 0.2712 1.378 1.892 2.1
0.4417 0.3788 1.166 1.680 2.3
0.5096 0.5044 1.010 1.524 2.5
0.5776 0.6479 0.891 1.406 2.7
0.6455 0.8094 0.798 1.312 2.9
0.7134 0.9888 0.721 1.236 3.1
0.7813 1.1861 0.659 1.173 3.3
0.8492 1.4014 0.606 1.120 35
0.9172 1.6346 0.561 1.075 3.7
0.9851 1.8857 0.522 1.037 3.9
1.0530 2.1548 0.489 1.003 4.1
1.1209 2.4419 0.459 0.973 4.3

Table 5: Coefficients of relative risk aversion for weekly frequency

We assume RRA 2.679.

CSP 1.6043
DPD 13.4282
ENI -11.707
GRT 5.2408
IBA -16.3065
MET -12.6804

NCT 4173
ORCL 16.8723
PNF 11.8223
Risk Free: -11.4471

Table 6: Optimal weight for 9 risky and one risk-free assets on weekly frequency with RRA 2.679

This weight distribution gives 0.2379 of returns with 0.1098 as standard deviation. As this

weight distribution consist of borrowing 11.44 times the initial investment. Investment then further
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extended by selling short ENI, 11.7, IBA, 16.3 and MET, 12.7 times the initial wealth. Positive
weights indicate buying: CSP, 1.6, DPD, 13.42, GRT, 5.24, NCT, 4.2, ORCL 16.82 and PNF, 11.82
times the initial investment.

Monthly frequency

E[Zp] o[Zp] Sharpe ratio RRA Y
0.3971 0.0407 9.757 13.582 1.5
1.1908 0.3677 3.239 7.086 2.5
1.9845 1.0223 1.941 5.790 3.5
2.7782 2.0043 1.386 5.235 4.5
3.5719 3.3138 1.078 4.926 55
4.3656 4.9508 0.882 4.730 6.5
5.1593 6.9152 0.746 4.594 7.5
5.9530 9.2072 0.647 4.494 8.5
6.7467 11.8267 0.570 4.418 9.5
7.5404 14.7736 0.510 4.358 10.5
8.3341 18.0481 0.462 4.310 115
9.1277 21.6500 0.422 4.269 12.5
9.9214 25.5794 0.388 4.236 13.5
10.7151 29.8363 0.359 4.207 14.5
11.5088 34.4207 0.334 4.182 15.5

Table 7: Coefficients of relative risk aversion for monthly frequency

We assume RRA 5.79 since that coefficient gives reasonable Sharpe ratio of 1.941.

CSP 25.2631
DPD 96.0683
ENI -61.9183
GRT 20.665
IBA -17.058
MET -30.3994
NCT 6.7155
ORCL 10.6992
PNF 16.637
Risk Free: -65.6723

Table 8: Optimal weight for 9 risky and one risk-free assets on monthly frequency with RRA 5.79
These weights give 1.198 of expected return with 1.0223 of standard deviation. Investment

capacity is extended by borrowing at risk-free rate 65.7 times the initial wealth, while selling CSP
25, DPD 97, GRT 20.7, NCT 6.7, ORCL 10.7 and PNF 16.7 times the initial wealth.



Optimal portfolio of nine stocks and a risk-free asset based on random walk test results

Predictability

Ticker Mean First lag \ Second lag \ Third lag
Daily Returns
PNF 0.0005 0.0543 0.0224 -0.0468
CSP 0.0001 -0.0102 -0.0014 -0.1006
DPD 0.0004 -0.0023 -0.0493 -0.0029
GRT 0.0013 -0.1132 -0.0348 0.0138
NCT 0.0024 -0.2062* 0.1256 -0.1055
IBA 0.0009 -0.0515 -0.0630 0.0210
ORCL 0.0006 -0.0436 0.0370 -0.0314
MET 0.0004 -0.1422* 0.1306 -0.1194
ENI 0.0002 0.0575 0.0017 -0.0623
SPY 0.0006 -0.0764 0.0306 -0.0637
Weekly Returns
PNF 0.0026 -0.0868 0.0564 -0.0259
CSP 0.0007 -0.0637 0.0678 0.0687
DPD 0.0021 -0.0049 -0.0997 0.0400
GRT 0.006 -0.146 0.0701 0.024
NCT 0.012 -0.140 0.028 -0.084
IBA 0.004 -0.045 0.012 0.077
ORCL 0.003 0.0656 -0.0293 -0.0452
MET 0.002 0.0106 0.0657 -0.1456
ENI 0.0011 -0.1033 0.0409 0.0474
SPY 0.003 -0.0568 0.0094 -0.0184
Monthly Returns
PNF 0.0090 0.1565 -0.0654 0.0409
CSP 0.0032 0.3338* 0.0951* -0.1004
DPD 0.0102 -0.0149 -0.2406 -0.0927
GRT 0.0336 0.1137 0.1256 0.1072
NCT 0.0578 0.0761 0.0486 0.0142
IBA 0.0206 0.0167 0.0826 0.1196
ORCL 0.0147 -0.1515 -0.1669 0.0905
MET 0.0125 -0.0560 -0.0624 -0.0188
ENI 0.0061 -0.0387 0.0395 -0.1795
SPY 0.0154 -0.0679 -0.0819 0.0514

Table 9: Statistic for testing RW3
Only the first three lags are shown since there were no statistically significant results past the second lag

Asterisks indicate the autocorrelation coefficient statistically different from 0 at 5% level of significance under RW3

based on VR statistic. Sample size for daily returns 1258, weekly 262, and monthly 60
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On daily horizon, based on variance ratio statistic we have two stocks with one significant
lag each: NCT and MET. Value of VR for NCT is 0.7938 and normalized Psi value is -2.6937.
Value of VR for MET is 0.8578 and normalized Psi value is -2.2974. Data also suggest that CSP on
monthly frequency has two significant coefficients under RW3. Psi values statistics for rho 1 and
rho 2 are 1.966 (VR = 1.3338) and 1.9658 (VR = 1.5084), respectively.

Daily frequency

E[Zp] o[Zp] Sharpe ratio RRA Y
0.0164 0.0030 5.467 5.536 1.2
0.0246 0.0067 3.672 3.720 1.3
0.0327 0.0120 2.725 2.812 1.4
0.0409 0.0187 2.187 2.267 15
0.0490 0.0270 1.815 1.904 1.6
0.0572 0.0367 1.559 1.645 1.7
0.0654 0.0480 1.363 1.450 1.8
0.0735 0.0607 1.211 1.299 1.9
0.0817 0.0750 1.089 1.178 2.0
0.0899 0.0907 0.991 1.079 2.1
0.0980 0.1080 0.907 0.996 2.2
0.1062 0.1267 0.838 0.927 2.3
0.1144 0.1469 0.779 0.867 2.4
0.1225 0.1687 0.726 0.815 2.5
0.1307 0.1919 0.681 0.770 2.6

Table 10: Coefficients of relative risk aversion for daily frequency with random walk 3 test

Again, Sharpe ratio around 2 is the most realistic average return on a unit of risk. It
corresponds to RRA 2.267

CSP -16.439
DPD 6.0318
ENI -3.9516
GRT 4.0659
IBA -11.0845
MET 2.2384
NCT 4.6253
ORCL 8.0053
PNF 21.5517
Risk Free: -14.0434

Table 11: Optimal weight for 9 risky and one risk-free assets on daily frequency with random walk 3 with RRA 2.267

Negative weight on risk-free assets means borrowing at risk-free rate. This optimal portfolio

configuration assumes borrowing 14 times the initial wealth. CSP should be sold short 16.4 times,

ENI 3.9 times and IBA 11 times the initial investment. The gained leverage is then invested in DPD

11



6.03 times the initial investment, while GRT 4.06, MET 2.23, NCT 4.62, ORCL 8 and PNF 21.5

times the initial wealth.

Weekly frequency
E[Zp] o[Zp] Sharpe ratio RRA Y
0.1700 0.0560 3.036 3.546 1.5
0.2379 0.1098 2.167 2.679 1.7
0.3059 0.1815 1.685 2.198 1.9
0.3738 0.2712 1.378 1.892 2.1
0.4417 0.3788 1.166 1.680 2.3
0.5096 0.5044 1.010 1.524 2.5
0.5776 0.6479 0.891 1.406 2.7
0.6455 0.8094 0.798 1.312 2.9
0.7134 0.9888 0.721 1.236 3.1
0.7813 1.1861 0.659 1.173 3.3
0.8492 1.4014 0.606 1.120 3.5
0.9172 1.6346 0.561 1.075 3.7
0.9851 1.8857 0.522 1.037 3.9
1.0530 2.1548 0.489 1.003 4.1
1.1209 2.4419 0.459 0.973 4.3

Table 12: Coefficients of relative risk aversion for weekly frequency with random walk 3 test

We are reporting weights for RRA 2.676.

CSP 1.6043
DPD 13.4282
ENI -11.707
GRT 5.2408
IBA -16.3065
MET -12.6804
NCT 4,173
ORCL 16.8723
PNF 11.8223
Risk Free: -11.4471

Table 13: Optimal weight for 9 risky and one risk-free assets on weekly frequency with random walk 3 with RRA 2.676

We extend our initial investment by borrowing at the free-risk rate, negative weight on risk-
free asset indicate this, and by selling short risky stocks, negative weight on risky assets is the
indication of that. Since the wealth in our calculations is normalized to 1, we just have to multiply
the values in the table by the wealth that we are factually going to have. Therefore, we are
borrowing 11.44 times the wealth, and then sell ENI, IBA and MET. We then buy CSP 1.6 times
and, DPD 13.42, GRT 5.2, NCT 4.2, ORCL 16.9 and PNF 11.8 all times the initial investment that

we are going to have.
12



Monthly frequency

E[Zp] o[Zp] Sharpe ratio RRA Y
0.4049 0.0384 10.544 14.765 1.5
1.2140 0.3468 3.501 7.742 2.5
2.0232 0.9640 2.099 6.341 35
2.8324 1.8901 1.499 5.740 4.5
3.6415 3.1249 1.165 5.407 55
4.4507 4.6686 0.953 5.195 6.5
5.2599 6.5212 0.807 5.048 7.5
6.0690 8.6825 0.699 4.940 8.5
6.8782 11.1527 0.617 4.858 9.5
7.6874 13.9317 0.552 4.793 10.5
8.4966 17.0196 0.499 4.740 11.5
9.3057 20.4163 0.456 4.697 125

10.1149 24.1218 0.419 4.660 13.5
10.9241 28.1361 0.388 4.629 14.5
11.7332 32.4593 0.361 4.602 15.5

Table 14: Coefficients of relative risk aversion for monthly frequency with random walk 3 test

For RRA 6.341 the weight are going to be

CSP 52.8569
DPD 94.9263
ENI -56.1482
GRT 17.4609
IBA -20.606
MET -36.2688
NCT 5.4432
ORCL 14.5263
PNF 12.0231
Risk Free: -83.2137

Table 15: Optimal weight for 9 risky and one risk-free assets on weekly frequency with random walk 3 with RRA 6.341

The weights here are especially unrealistic. That is only possible in no tax and no transaction

costs environment. Here we have to borrow 83 time the initial investment, while selling short ENI
56 and MET 36 times, while buying CSP 52, DPD 94, GRT 17.5, NCT 5.4, ORCL 14.5 and PNF 12

times the initial investment.
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Optimal portfolio of 100 stocks and a risk-free asset based on random walk test results

BWP CAS CEB CHL CIR
BWS CAT CEC CHN Cl
BXC CAT CEE CHS CKP
BXM CBB CEL CHT CLB
BXP CBD CEO CHU CLC
BXS CBG CEQ CIA CLF
BX_ CBI CE_ CIB CLG
BYD CBK CFlI CIE CLH
BYI CBL CFR CIF CLI
BYM CBM CEX CIG CL
BZH CBR CF Cll CSP
CAB CBS CCK CIM C
CAC CBT CCL CGA DPD
CAE CBU CCO CGG ENI
CAF CBZ CCU CaGl GRT
CAG CB CCz CHA IBA
CAH CCC CDE CHD MET
CAJ CCE CDI CHE NCT
CAM CClI CDR CHH ORC
CAP CCJ CEA CHK PNF

Table 16: 100 stocks for the same code to test the weights convergence to something realistic
The table contains tickers of risky stocks that were used as input for the same code

The key idea is that if more stocks are used, the weights might converge to something more
realistic. The results are reported selectively. For daily returns, we have to use RRA 6.01 for
realistic information ratio (2.69). The weight for risk free asset reaches -1344, while for risky assets
weights range from -100, for CAJ, to 319, for CAG. For weekly, with RRA of 57, weight for risk-
free rate is -239.8751. The smallest weight for risky asset is -90, for DPD, while the highest is 91 for
Cl. For monthly returns, we get completely erratic results. On the interval of RRA from -20 to 5 all
defined portfolios have 0 risk. The procedure assigns all weight to the risk-free asset, while the
weights for risky assets are zero. As the result, we do not observe convergence with greater number
of stocks.

Special interest represents the weekly frequency because we do not reject RW3 on our basic
data on weekly returns. Table 17 contains that statistics for RRA 132 and y equal to 1.5.
Interestingly, but efficiency of portfolio actually decreased. Expected returns fell down, while

variance increased. It happens because in most cases regressing on significant lags decreases the
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predicted price, rather than increases it. While, variance

more realistic, yet less pleasant.

is still kept stationary. Testing for RW is

Ticker RW RW test Ticker RW RW test | Ticker RW RW test
BWP -4.2222 | -4.5288 | CB -0.0073 | -0.1339 | CHS 0.772 0.798
BWS 2.8207 | 2.8141 | CCC -1.0577 | -1.2144 | CHT 7.8569 7.8482
BXC (1) -1.7714 | -1.9575 | CCE 5.7272 | 5.8841 | CHU -4.1857 | -4.2801
BXM -1.128 | -1.0961 | CCI 8.3072 | 8.5445 | CIA (3) -1.07 | -1.1518
BXP* 1.7655 1.665 | CCJ -2.0493 | -2.0919 | CIB 5.6939 5.9344
BXS 0.5873 | 0.5055 | CCK 4.407 4.449 | CIE 2.9589 3.0064
BX 0.543 | 0.7607 | CCL -4.8682 | -4.9474 | CIF 6.7475 6.7261
BYD -0.1027 -0.089 | CCO -1.454 | -1.4578 | CIG -1.8246 | -1.7316
BYI -1.9457 | -1.9536 | CCU 3.2703 | 3.1146 | ClI -45127 | -4.7335
BYM (2) 4.0336 | 4.3797 | CCZ 1.6567 1.6139 | CIM (1) -1.539 | -1.5263
BZH 1.0169 | 0.9519 | CDE -1.2358 | -1.1215 | CIR -0.1605 | -0.0728
CAB -0.1426 | -0.1347 | CDI -5.366 | -5.5527 | CI 13.739 | 13.8777
CAC 2.8255 | 2.8763 | CDR -1.5036 | -1.4287 | CKP -4.3566 | -4.4475
CAE 0.4393 | 0.2382 | CEA 0.9881 1.0517 | CLB 4.5365 45112
CAF -0.5303 | -0.6131 | CEB 24463 | 2.4975 | CLC (8) 0.0283 0.0571
CAG -1.4545 | -1.4686 | CEC 0.3523 | 0.3245 | CLF -2.5935 | -2.6656
CAH 2.5597 | 2.7087 | CEE (6) 2.6953 | 2.2839 | CLG -2.3703 | -2.3598
CAJ -4.316 | -4.2585 | CEL (8) -0.6363 | -0.8909 | CLH (8) -0.5215 | -0.5244
CAM (2) 25349 | 2.4714 | CEO 24177 2.3851 | CLI -1.4196 | -1.4631
CAP (2) 1.5131 1.482 | CEQ -2.4199 | -2.3671 | CL 10.4382 | 10.1277
CAS 2.1867 | 2.3346 | CE -2.9696 | -3.1049 | CSP -11.727 | -11.7575
CAT -3.9447 | -4.0101 | CFI 21499 | 22833 | C 0.0781 -0.018
CAT -1.6232 | -1.6412 | CFR 44972 | 4.5134 | DPD -13.7938 | -13.7391
CBB 1.6803 1.6484 | CFX 46779 | 4.6852 | ENI -9.5104 | -9.6027
CBD -1.5313 | -1.4731 | CF 2.9195| 2.9371 | GRT 5.417 5.483
CBG -0.6752 | -0.7576 | CGA -0.6754 | -0.6908 | IBA -3.5399 | -3.6126
CBI 2.3153 | 2.3358 | CGG -3.2286 | -3.2358 | MET -3.1519 | -2.9742
CBK -1.0035 | -1.0827 | CGlI 2.9346 | 2.9778 | NCT 0.0947 0.0951
CBL -3.9397 | -4.0249 | CHA 24694 | 2.6223 | ORC 4.6685 4.815
CBM 1.2363 1.2613 | CHD (8) 7.7966 | 8.0365 | PNF 1.2323 1.2286
CBR -0.7799 | -0.8454 | CHE 2.9756 | 2.9022
CBS 41282 | 4.1593 | CHH (2) 43871 | 3.9704 | RF: -36.8803 | -35.4761
CBT -1.291 | -1.3382 | CHK -2.6599 | -2.8007 | E[Zp] 0.4889 0.4888
CBU 3.9145 | 4.2245 | CHL (8) -0.582 | -0.5494 | 6[Zp] 0.0054 0.0055
CBZ (8) -1.3742 | -1.6697 | CHN -0.7914 | -0.7359

Table 17: Comparing the results under assumption of RW and test of RW for weekly frequency

A number next to ticker indicates a number of significant lags. RW3 is tested by VR
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Conclusion

To compare results we inspect the computed optimal weights keeping the same frequency

and value of Y

Random Testing for Random Testing for Random Testing for
Ticker walk RW walk RW walk RW
Monthly (y=3.5) Weekly (y=1.7) Daily (y=1.6)
CSP 25.2631 52.8569* 1.6043 1.6043 -19.5000 -19.7272
DPD 96.0683 94.9263 13.4282 13.4282 8.0268 7.2383
ENI -61.9183 -56.1482 -11.7070 -11.7070 -4.9010 -4.7420
GRT 20.6650 17.4609 5.2408 5.2408 4.8544 4.8792
IBA -17.0580 -20.6060 -16.3065 -16.3065 -13.3000 -13.3016
MET -30.3994 -36.2688 -12.6804 -12.6804 8.2058 2.6861*
NCT 6.7155 5.4432 4.1730 4.1730 5.0216 5.5504*
ORCL 10.6992 14.5263 16.8723 16.8723 9.9443 9.6066
PNF 16.6370 12.0231 11.8223 11.8223 25.8140 25.8626
Risk Free: | -65.6723 -83.2137 -11.4471 -11.4471 -23.2000 -17.0525
E[Zp] 1.9845 2.0232 0.2379 0.2379 0.0519 0.0490
o[Zp] 1.0223 0.9640 0.1098 0.1098 0.0284 0.0270

Table 18: Comparing the results under assumption of RW and test of RW
Asterisks indicate that given security has autocorrelation coefficient(s) statistically different from 0 at 5% level of
significance under RW3 based on VR statistic.

In monthly returns, CSP security has two significant lags. Both rho coefficient are positive

(cf. table 9) meaning that positive change in past indicates ascending pricing for the period of
prediction. The optimal weights algorithm assigned to CSP more than twice the amount of
investment in comparison to optimal allocation under random walk hypothesis. That led to
corresponding change in all optimal weight allocation, including risk-free asset. Eventually that
configuration made up a more efficient portfolio that has higher returns with lower risk. In the data
weekly returns did not have statistically significant lags, that the reason for identical results in
weights, returns and standard deviation. Testing for random walk in daily returns actually slightly
decreased the efficiency of portfolio. Two securities, MET and NCT, both have significant lags with
negative value of rho coefficients. Algorithm decreased quadruply the investment in MET, while the
investment in NCT is kept the same.

Predictability components in stocks does lead to change in optimal weight allocation,
however, as data suggest it does not necessarily for good. Efficiency of portfolios might both
increase and decrease. There is no apparent pattern. The weight allocation is quit theoretical as we

already conceded. We operate in the tax and transaction costs free environment, frictionless world.
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Normally there are limits on borrowing at risk-free rate and number of transactions are minimized
especially in daily returns, where those costs are comparably to returns.
The computations for this paper are done in GAUSS. The code itself and output file are

attached in appendix.
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library pgraph;
screen offT;

output file=asstB.res reset;

outwidth 256;

format /rd 10,4;

/*Sample Size: Daily=1258, Weekly=262, Monthly=60*/

lags=10;

y=fFilesa("*csv'");
y_rows= ROWS(Y);

daily_matrix=zeros((y_rows/3),7);
weekly matrix=zeros((y_rows/3),7);
monthly matrix=zeros((y_rows/3),7);
monthly i=1;

weekly i1=1;

daily i=1;

/*creating a matrix of returns for daily, weekly and monthly data*/
mor_d=zeros(1247,(y_rows/3));

mor_w=zeros(251, (y_rows/3));

mor_m=zeros(49, (y_rows/3));

file_count=1;
do until Tile_count>y rows;
file_name=y[file_count,1];

/*loading the data set as a single string*/

load data[]= ~file_name;

T= rows(data)/8-1;

/*Transforming the single string data set into a proper (T+1) by 8 data set*/
datal=reshape(data, (T+1),8);

/*Assigning the "adjusted close” data - the data to be worked with*/
adjclose= datal[(T+1):2,8];

/*Fixing the Irrational number error when loading raw data from Yahoo finance*/
adjclose=abs(adjclose);

logclose=In(adjclose);

/*net and log of return #ofreturns x 1 matrices*/
net_ret=(adjclose[2:T,1]-adjclose[1:(T-1),1])-/adjclose[1:(T-1),1];

log ret=logclose[2:T,1]-logclose[1:(T-1),1];

/*Means, Variance, Skewness, Kurtosis for Normality Test*/
mean=meanc(nhet_ret);

variance=vcx(nhet_ret);

log _mean=meanc(log_ret);

log_variance=vcx(log_ret);

sumcubed=0;

sumquad=0;

logsumcubed=0;

logsumquad=0;

i=1;

do until i>(T-1);
sumcubed=sumcubed+(net_ret[i, .]-mean)”"3;
sumquad=sumquad+(net_ret[i, .]-mean)™4;
logsumcubed=logsumcubed+(log_ret[i,.]-1og_mean)”"3;
logsumquad=logsumquad+(log_ret[i, .-]-log_mean)™4;



i=i+1;

endo;

/*Net Results - Normality Test*/
skewness=sumcubed/ ((T-1)*(variance”~(3/2)));

kurtosis=sumquad/((T-1)*(variance”2));
JB=((T-1)/6)*(skewness™2+((kurtosis-3)"2)/4);

if JB < 5.99;

normality = "pass’;
else;
normality = "fail";
endif;

/*Log Results - Normality Test*/
log_skewness=logsumcubed/ ((T-1)*log_variance”(3/2));
log_kurtosis=logsumquad/((T-1)*log_variance”2);

log JB=(T-1)*(log_skewness™2+((log_kurtosis-3)"2)/4)/6;

if log JB < 5.99;

log_normality 'pass'';
else;
log normality = "fail";
endif;

/*Random Walk 1:*/
/*Creating a 1247x11 matrix of returns rt, rt-1,..., rt-10*/
r_matrix=zeros(T-(lags+1l), (lags+1l));
m=1;
do until m>(lags+l);
r_matrix[.,m]=log_ret[(12-m):(T-m),1];
m=m+1;
endo;
cov_matrix=vcx(r_matrix);

/*Making a 10x1 matrix of Pearson Coefficient Values:*/
p_matrix=zeros(lags,1);
z_matrix=zeros(lags,1);
=1;
do until f>lags;
p_matrix[f,1l]=cov_matrix[1l, (f+1)]/(cov_matrix[1l,1]™(1/2)*cov_matrix[(f+1),(f+1
IN(1/2));
z_matrix[f,1]=p_matrix[f,1]/((/(T-11))~(1/2));
f=Ff+1;
endo;

/*Box-Pierce Q-statistic*/
Qm=zeros(lags,1);
Qm_counter=1;
do until Qm_counter>lags;
i=1;
do until i>0Qm_counter;
Qm[Qm_counter,1]1=0m[Qm_counter,1]+((T-11)*(p_matrix[i,1]"2));
i=i+l;
endo;
Qm_counter=0Qm_counter+1;
endo;

/*RW3 Testing*/
VR=zeros((lags),1)+1;



q=1;
do until g>(lags);
k=1;
do until k>(g-1);
VR[q,1]=VR[q,1]+2*(1-(k/(9-1)))*p_matrix[k,1];
k=k+1;
endo;
q=q+1;
endo;

/* SD for VR... NOTE: k = g-1*/
gamma_tot = zeros((lags-1),1);
gamma_top = zeros((lags-1),1);
gamma_bottom = zeros((lags-1),1);
log mean2=meanc(log_ret[1:(T-1),1]);

k=1;
do until k>(lags-1);
J=(k+1);
do until j>(T-1);
gamma_top[k,1]=gamma_top[k,1]+(T-1)*((log_ret[j,1]-
log mean2)"2*(log_ret[(j-k),1]-1og_mean2)”"2);
1=1+1;
endo;
i=1;
do until j>(T-1);
gamma_bottom[k,1]=gamma_bottom[k,1]+(log_ret[]j,1]-log_mean2)"2;
J=i+1;
endo;
k=k+1;

endo;

gamma_tot=gamma_top./(gamma_bottom™2);
theta=zeros((lags),1);
q=1;
do until g>(lags);
k=1;
do until k>(g-1);
theta[q,1]=theta[q,1]+gamma_tot[k,1]*(2*(1-(k/q)))"2;
k=k+1;
endo;
q=q+1;
endo;

standardized=((T-D)™N(1/2))*(VR[3:1ags,1]-1)./(theta[2: (lags-1)]"(1/2));

RW3_test=zeros((lags-2),2);
i=1;
do until i>(lags-2);
if (standardized[i,1]"2)"(1/2)>1.96;
RW3_test[i,1]="Reject";
RW3_test[i,2]=1;
else;
RW3_test[i,1]="RW3";
RW3_test[i,2]=0;
endif;
i=i+l;
endo;



/*Forecast Predictability based on VR result*/
i=1;
predictability=0;
do until i>(lags-2);

iT RW3_test[1,2]>0;

predictability=i;

endif;
i=i+l;
endo;

/*Assign returns based on predictability*/

/*Filling in the matrix of returns for daily, weekly and monthly data*/
rt_plusl=zeros((T-lags-1),1);
i=1;
do until i>(T-lags-1);
rt_plusl[i,l]=meanc(log_ret[i:(i+lags),1]);
i=i+l;
endo;

rt=zeros((T-lags-1),lags);
if predictability>0;
i=1;
do until i>lags;
rt[.,1]=log_ret[1:(T-1-(lags+l)+i1),1];
i=i+l;
endo;

reg_x=zeros((T-lags-1),predictability);
reg_y=rt[.,2];
i=1;
do until i>(predictability);
reg_x[.,i]=rt[.,(i+2)];
i-i+l;
endo;

{ vnam, m, b, stb,

vc, stderr, sigma,

CcX, rsqg, resid, dwstat } = ols(0,reg_y,reg x);
i=1;
rt[.,1l]=zeros(T-lags-1,1);
ref.,1]=rt[.,1]+b[1,1];

do until i>predictability;
re[.,1]=rt[.,1]+rt[.,(i+1)] .- *b[(i+1),1];
i=-i+l;
endo;
endif;

rt_plusl[.,l]=exp(rt_plusl)-1;
meanl=meanc(rt_plusli[.,1]);

if predictability>0;
rt_ plusl[.,1]=exp(rt[.,1])-1;
rtl=meanc(rt[.,1]);
rtl=exp(rtl)-1;

else;
rtl=meanl;

endif;



if T<100;
mor_m[.,monthly_i]=rt_plusi[.,1];
elseif T>400;
mor_d[.,daily_i]=rt_plusl[.,1];
else;
mor_w[.,weekly i]=rt plusl][.,1];
endif;

/*To get result with RW assumption, 5t column in should be changed from “rtl” to
“meanl”*/

if T<100;

monthly matrix[monthly i,1]=File_count;
monthly_matrix[monthly_i,2]= flle_name'
monthly matrix[monthly_ i,3] ‘Monthly";
monthly_matrix[monthly_ i,4]=3;

monthly matrix[monthly i,5]=rtl;
monthly_matrix[monthly_ i,6] predictability;
monthly matrix[monthly_ i,7]=meanl;
monthly_i=monthly_i+1;

elseift T>499;

daily matrix[daily_i,1]=File_count;
daily_matrix[daily_i,2]=File_name;
daily matrix[daily_i,3]="Daily";
daily_matrix[daily_i,4]=1;

daily matrix[daily_ i,5] rtl;
daily_matrix[daily_i,6]=predictability;
daily matrix[daily_i,7]=meanl;

daily _i=daily_i+1;

else;

weekly matrix[weekly i,1]=File_count;
weekly _matrix[weekly i,2]=File_name;
weekly matrix[weekly i,3]="Weekly";
weekly _matrix[weekly i,4]=2;

weekly matrix[weekly i,5]=rt1;

weekly _matrix[weekly i,6]=predictability;
weekly matrix[weekly i,7]=meanl;

weekly i=weekly i+1;

endif;

file _count=Ffile_count+1;
endo;
/*End of single file parsing*/

/*Start of portfolio building*/
oldfmt = formatnv(""*.*I1f" ~ 8 ~ 4);
let mask[1,7]=1 00111 1;
d=printfmt(daily_matrix,mask);

print;
d=printfmt(weekly_matrix,mask);
print;
d=printfmt(monthly_matrix,mask);
print;

call formatnv(oldfmt);

/*Reminder: mor_w, mor_m, mor_d for Matrix of net Returns - with different
frequencies*/

/*Risk Free Returns: Daily, Weekly, Monthly*/

rf_d=1.017~(1/260)-1



rf w=1.017~(1/52)-1;
rf_m=1.017~(1/12)-1;

/* ____________________________________________________________ */
/* Daily: */
Y */

X=(1);
daily_Y=zeros(15,4);
9=1;

do until g>15;

/*Inverse of the Variance/covariance Matrix*/
v_ij=vcx(mor_d);
v_ij=inv(v_ij);

Wpi=zeros((daily_i-1),1);
a=zeros((daily_i-1),1);
b=zeros((daily_i-1),1);
c=zeros((daily_i-1),1);
/*Weight of stock 1 in portfolio p Wpi*/
i=1;
do until i>(daily_i-1);
J=1;
do until j>(daily_i-1);
Wpi[i,1]=Wpi[i,1]+ v_ij[i,jl*(daily_matrix[j,5]-rf_d);
a[i,1]=a[i,1]+v_ij[1,j]*(daily_matrix[]j,5]);
b[i,1]=b[i,1]+v_ij[i,J]1*(daily_matrix[j,5])*(daily_matrix[i,5]);
cli,1]=c[i,1]+v_ij[i.j]l;
J=j+1;
endo;
i-i+l;
endo;
i=1;
positive _sum=0;
negative_sum=0;
do until i>rows(Wpi);
if Wpi[i,1]>0;
positive_sum=positive_sum+Wpi[i,1];
else;
negative_sum=negative_sum+Wpi[i,1];
endif;
i-i+l;
endo;
a=sumc(a);
b=sumc(b);
c=sumc(c);
D=(c*rf_dn2-2*a*rf_d+b);
E= (rf_d+(Y/X)*D-D)/(1+D);
theta k=2*(Y-X*(1+E))/X;

/*Solving for Weight of Risk Free Asset, E[Zp*], Var[P*] and RRA associated with
them*/

WpO=1-(theta_k/2)*(a-c*rf_d);

epr=rf_d+(theta_k/2)*D;

varp=(theta_k/2)"2*D;

RRA=(X*(1+epr))/ (Y-X*(1+epr));

print "M"——————— ;



print "Daily:";

print "+ve" positive sum*(theta k/2);

print "-ve" negative_sum*(theta_k/2);

print "Risky Asset Weights: " Wpi~.*(theta k/2);
print;

print "Risky Sum: " sumc(Wpi.*(theta _k/2));
print "Risk Free: ' WpO;

print;

print "a b c: " a b c;

print "D E" D E;

print "Theta: " theta Kk;
print "E[Zp]= " epr;

print "Var[Zp]= " varp;
print "RRA = " RRA;
print;

daily_Y[g,1l]=epr;
daily Y[g,2]=varp;
daily_Y[g,3]=RRA;
daily Y[g,4]=Y;
Y=Y+0.1;

g=g+1;

endo;

print " ElZp] Var[Zp] RRA Y'";
print daily_Y;

/* ____________________________________________________________ */
/* Weekly: */
/e */

weekly_Y=zeros(15,4);
g=1;
do until g>15;

v_ij=vex(mor_w);
v_ij=inv(v_ij);
Wpi=zeros((weekly i-1),1);
a=zeros((weekly_i-1),1);
b=zeros((weekly i-1),1);
c=zeros((weekly_i-1),1);
/*Weight of stock 1 in portfolio p Wpi*/
i=1;
do until i>(weekly i-1);
J=1;
do until j>(weekly i-1);
Wpi[i,1]=Wpi[i,1]+ v_ij[i,jl1*(weekly _matrix[j,5]-rf_w);
a[i,1]=af[i,1]+v_ij[i,j]*(weekly_matrix[j,5]);
b[i,1]=b[i,1]+v_ij[i,j]1*(weekly matrix[j,5])*(weekly matrix[i,5]);
c[i,1]=c[i,1]+v_ij[i.j];
J=i+1;
endo;
i=i+l;
endo;

a=sumc(a);
b=sumc(b);
c=sumc(c);
rra_graph=zeros(15,3);



/*Solving for E_m = E[Zp] and then sub it in to solve for Theta */
D=(c*rf_wn"2-2*a*rf_w+b);

E= (rf_w+(Y/X)*D-D)/(1+D);

theta k=2*(Y-X*(1+E))/X;

/*Solving for Weight of Risk Free Asset, E[Zp*], Var[P*] and RRA associated with
them*/

WpO=1-(theta_k/2)*(a-c*rf_w);

epr=rf_w+(theta_k/2)*D;

varp=(theta _k/2)"2*D;

RRA=(X*(1+epr))/(Y-X*(1+epr));

print "-—————— "

print "Weekly:";

print "Risky Asset Weights: " Wpi~.*(theta k/2);
print;

print "Risky Sum: " sumc(Wpi.*(theta k/2));
print "Risk Free: ' WpO;

print;

print "a b c:
print "D E" D E;

abc;

print "Theta: " theta Kk;
print "E[Zp]= " epr;

print "Var[Zp]= " varp;
print "RRA = " RRA;
print;

weekly Y[g,1l]=epr;
weekly Y[g,2]=varp;
weekly_Y[g,3]=RRA;
weekly Y[g,4]=Y;
Y=Y+0.2;

g=g+1;

endo;

print " E[Zp] Var[zp] RRA Y";
print weekly Y;

Y o */
/* Monthly: */
) o */

Y=(1.5);
X=(1);
monthly_Y=zeros(15,4);
g=1;

do until g>15;

v_ij=vex(mor_m);
v_ij=inv(v_ij);
Wpi=zeros((monthly i-1),1);
a=zeros((monthly_i-1),1);
b=zeros((monthly _i-1),1);
c=zeros((monthly i1-1),1);

/*Weight of stock 1 in portfolio p Wpi*/
i=1;
do until i>(monthly i-1);

J=1;



do until j>(monthly_ i-1);
Wpi[i,1]=Wpi[i,1]+ v_ij[i,j1*(monthly matrix[j,5]-rf m);
a[i,1]=a[i,1]+v_ij[1,j]1*(monthly_matrix[}J,5]);
b[i,1]=b[i,1]+v_ij[i,jl*(monthly matrix[j,5])*(monthly matrix[i,5]);
cli,1l]=c[i,1]+v_ij[1.]j]:

J=3+1;
endo;
i=i+1;

endo;

a=sumc(a);
b=sumc(b);
c=sumc(c);
rra_graph=zeros(15,3);

/*Solving for E m = E[Zp] and then sub it in to solve for Theta */
D=(c*rf_m"2-2*a*rf_m+b);

E= (rf_m+(Y/X)*D-D)/(1+D);

theta k=2*(Y-X*(1+E))/X;

/*Solving for Weight of Risk Free Asset, E[Zp*], Var[P*] and RRA associated with
them*/

WpO=1-(theta_k/2)*(a-c*rf_m);

epr=rf_m+(theta_k/2)*D;

varp=(theta k/2)"2*D;

RRA=(X*(1+epr))/(Y-X*(1+epr));

print "-———— s
print "Monthly:";

print "Risky Asset Weights: " Wpi~.*(theta k/2);
print;

print "Risky Sum: " sumc(Wpi.*(theta k/2));
print "Risk Free: " WpO;

print;

print "fa b c: " ab c;

print "D E" D E;

print "Theta: " theta_k;

print "E[Zp]= " epr;

print "Var[Zp]= " varp;

print "RRA = " RRA;

print M- s
print;

monthly_Y[g,1]=epr;
monthly Y[g,2]=varp;
monthly_Y[g,3]=RRA;
monthly_Y[g,4]=Y;
Y=Y+1;

g=g+1;

endo;

print " ElZp] Var[Zp] RRA Y™
print monthly Y;



