
Proposed solutions for tutorial 7

Intermediate Microeconomics (UTS 23567)*

Preliminary and incomplete

Available at https://backwardinduction.blog/tutoring/

Office hours on Mondays from 9 am till 10 am in building 8 on level 9

Please whatsapp me on 0457871540 so I could meet you at the door, I don’t have an internal phone

Also please whatsapp if you have questions, I won’t be able to answer through whatsapp but I will give answer during office hours

or, since you are very unlikely to have ask a unique question, in the beginning of next tutorial

Sergey V. Alexeev

8 of May, 2018

Navigation
Page numbers are clickable

Question 1 2

Answer to 1.a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Answer to 1.b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Answer to 1.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Answer to 1.d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Question 2 (Profit Maximization in the Long Run) 8

Answer to 2.a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Answer to 2.b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Answer to 2.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Answer to 2.d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Answer to 2.e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Question 3 (Cost Minimization and Profit Maximization) 17

*Questions for the tutorial were provided by Massimo Scotti, slide and textbook are by Nechyba (2016). Solutions and commentary are by Sergey
Alexeev (e-mail: sergei.v.alexeev@gmail.com). (Btw this is a much better book Varian (1987))

1

https://backwardinduction.blog/tutoring/


Sergey Alexeev 23567 Tutorial 7

Question 1

Suppose technology is given by

𝑓(ℓ, 𝑘) = 𝑘ℓ

In Tutorial 6 you saw that, in this case, the least-cost input combination to produce

𝑥 = 8

when

𝑤 = $1

and

𝑟 = $2

is

(ℓ, 𝑘) = (4, 2)

1.a.

What is the cost of producing 8 units of output when the price of labour is $1 and the price of capital $2?

Answer to 1.a

Recall that

(4, 2) = (ℓ*, 𝑘*) = arg min
ℓ,𝑘

{︃
𝑤ℓ + 𝑟𝑘

s.t. 𝑓(ℓ, 𝑘) = 8

i.e. being optimal the input already contains information on an isoquant

Thus

𝐶 = 𝑤ℓ* + 𝑟𝑘* = 1 × 4 + 2 × 2 = 8
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Question 1

Suppose technology is given by

𝑓(ℓ, 𝑘) = 𝑘ℓ

In Tutorial 6 you saw that, in this case, the least-cost input combination to produce

𝑥 = 8

when

𝑤 = $1

and

𝑟 = $2

is

(ℓ, 𝑘) = (4, 2)

1.b

In the graph above, show what happens when r decreases to $1

Answer to 1.b

Intuitively a decrease in 𝑟 should lead to increase of the usage of 𝑘 in production.1

We can calculate costs

𝑤ℓ + 𝑟𝑘 = 8

𝑘 =
8

𝑟
− 𝑤

𝑟
ℓ

𝑘 = 4 − 1

2
ℓ

and plot it with an isoquant

2 4 6 8 10
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10

ℓ

𝑘 𝑘 = 8/ℓ

𝑘 = 4− 1/2ℓ

1This is what your maths has to reflect. Always try to envision the answer with your minds before doing mathematics, it’ll save you time in
the long run. Mathematics is an intuition expressed formally, thus mathematics without intuition is not mathematics.
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however, observe that as

𝑟 = 2 → 𝑟 = 1

cost function becomes

𝑘 =
8

𝑟
− 𝑤

𝑟
ℓ

𝑘 =
8

1
− 1

1
ℓ

𝑘 = 8 − ℓ

which graphically demonstrates

2 4 6 8 10
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ℓ

𝑘 𝑘 = 8/ℓ

𝑘 = 4− 1/2ℓ

that the previous bundle (4, 2) does not satisfy an optimality condition{︃
𝑇𝑅𝑆(ℓ, 𝑘) = −𝑤/𝑟

𝑓(ℓ, 𝑘) = 𝑥

anymore.
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Question 1

Suppose technology is given by

𝑓(ℓ, 𝑘) = 𝑘ℓ

In Tutorial 6 you saw that, in this case, the least-cost input combination to produce

𝑥 = 8

when

𝑤 = $1

and

𝑟 = $2

is

(ℓ, 𝑘) = (4, 2)

1.c

What is the new least-cost combination of inputs if 𝑟 decreases to $1?

Answer to 1.c

The new optimal bundle {︃
𝑇𝑅𝑆(ℓ, 𝑘) = −𝑤/𝑟

𝑓(ℓ, 𝑘) = 𝑥
⇒
{︃

−𝑘/ℓ = −1/1

ℓ𝑘 = 8

⇒
{︃

ℓ = 𝑘

ℓ𝑘 = 8

⇒
{︃

ℓ = 𝑘

𝑘𝑘 = 8

⇒
{︃

ℓ =
√

8

𝑘 =
√

8
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to illustrate it graphically we need to calculate the new isocost

𝑤ℓ + 𝑟𝑘 = 2
√

8 ≈ 5.66

𝑘 =
5.66

𝑟
− 𝑤

𝑟
ℓ

𝑘 = 5.66 − ℓ

and combine it with an isoquant

2 4 6 8 10

2

4

6

8

10

ℓ

𝑘 𝑘 = 8/ℓ
𝑘 = 5.66− ℓ
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Question 1

Suppose technology is given by

𝑓(ℓ, 𝑘) = 𝑘ℓ

In Tutorial 6 you saw that, in this case, the least-cost input combination to produce

𝑥 = 8

when

𝑤 = $1

and

𝑟 = $2

is

(ℓ, 𝑘) = (4, 2)

1.d

How the production cost changed as 𝑟 decreases to $1?

Answer to 1.d

𝑤oldℓold +𝑟old𝑘old =8

− 𝑤newℓnew+𝑟new𝑘new=5.66

=2.34
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Question 2 (Profit Maximization in the Long Run)

A producer has to pay a licence fee of $1 to run his business. If the producer decides not to pay the fee, he essentially

exits the market, in which case his cost of production is equal to zero. If he decides to pay the fee, then his cost of

production will include both the licence fee and a component that depends on the level of output as well as on the

the prices of input. In particular, let’s assume that the (long run) cost function of this producer reads:

𝐶(𝑥,𝑤, 𝑟) =

⎧⎨⎩ 0 if 𝑥 = 0

1 + 1
2𝑤𝑟𝑥

2 if 𝑥 > 0

NOTE:

In the long run, a licence fee is an example of an economic fixed cost. It is an economic cost because in the long

run the producer can decide whether to pay the fee or not (hence it is not a sunk cost). It is a fixed cost because it

does not depend on the level of output. Clearly, once the fee has been paid, it becomes a fixed sunk cost and hence

ceases to be an economic cost.

2.a

What is the profit maximizing quantity if

𝑤 = $2

𝑟 = $4

𝑝 = $2?

Answer to 2.a

The necessary condition for profit maximization is

𝑝 = 𝑀𝐶(𝑥)

a point where the firm can not increase the profit by changing the level of output.2

2To see it assume that
𝑝 > 𝑀𝐶(𝑥),

i.e. firm is producing less. Recall that by definition 𝑀𝐶(𝑦) =
𝜕𝐶(𝑥)
𝜕𝑥

≈ Δ𝐶(𝑥)
Δ𝑥

. Thus, the above can be rearranged into

𝑝−
Δ𝐶(𝑥)

Δ𝑥
> 0

now an output increase by Δ𝑦 gives a profit increase of

𝑝Δ𝑥−
Δ𝐶(𝑥)

��Δ𝑥
��Δ𝑥 > 0 ⇒ 𝑝Δ𝑥−Δ𝐶(𝑥) > 0 ⇒ 𝑝Δ𝑥 > Δ𝐶(𝑥)

so it makes sense to increase the output, or, put differently, increase in revenue exceeds increase in costs. So we proved that 𝑝 > 𝑀𝐶(𝑥) can not
be optimal. The same reasoning is true for 𝑝 < 𝑀𝐶(𝑥)
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So with

𝑀𝐶(𝑥) =
𝜕𝐶(𝑥)

𝜕𝑥
=

𝜕
(︁

1 + 1
2𝑤𝑟𝑥

2
)︁

𝜕𝑥
=

𝜕(1 + 4𝑥2)

𝜕𝑥
= 8𝑥 𝑥 ̸= 0

and

𝑝 = 2

we have

𝑝 = 𝑀𝐶(𝑥)

2 = 8𝑥

𝑥 = 1/4
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Note that the condition was necessary, i.e. all profit maximizing values satisfy 𝑝 = 𝑀𝐶(𝑥) but not other way around.

We need to check the shutdown condition (a condition that all points need to satisfy, including the ones selected by profit

maximizing condition)

𝑝 > 𝐴𝐶(𝑥)

as well3

Clearly

𝐴𝐶(𝑥) =
𝐶(𝑥)

𝑥
=

(1 + 1
2𝑤𝑟𝑥

2)

𝑥
=

1 + 4𝑥2

𝑥
=

1

𝑥
+ 4𝑥

and with 𝑝 = 2 we have

𝑝 > 𝐴𝐶(𝑥)

2 > 𝐴𝐶

(︃
1

4

)︃
2�>5

The operation does not cover 𝐴𝐶(𝑥), thus shutting down is optimal. Which is a red dot on the figure below

−0.2 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2

4

6

8

10

12

14

𝑥

𝐶(𝑥),𝑀𝐶(𝑥), 𝐴𝐶(𝑥), 𝑝
𝐶(𝑥) = 1 + 4𝑥2

𝑀𝐶(𝑥)=8x

𝐴𝐶(𝑥) = 1/𝑥 + 4𝑥

3You go out of business in long run if

Producing nothing > Producing something

0 > Profits

0 > 𝑝𝑥− 𝐶(𝑥)

𝑝𝑥 > 𝐶(𝑥)

𝑝 > 𝐴𝐶(𝑥)
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Question 2 (Profit Maximization in the Long Run)

A producer has to pay a licence fee of $1 to run his business. If the producer decides not to pay the fee, he essentially

exits the market, in which case his cost of production is equal to zero. If he decides to pay the fee, then his cost of

production will include both the licence fee and a component that depends on the level of output as well as on the

the prices of input. In particular, let’s assume that the (long run) cost function of this producer reads:

𝐶(𝑥,𝑤, 𝑟) =

⎧⎨⎩ 0 if 𝑥 = 0

1 + 1
2𝑤𝑟𝑥

2 if 𝑥 > 0

NOTE:

In the long run, a licence fee is an example of an economic fixed cost. It is an economic cost because in the long

run the producer can decide whether to pay the fee or not (hence it is not a sunk cost). It is a fixed cost because it

does not depend on the level of output. Clearly, once the fee has been paid, it becomes a fixed sunk cost and hence

ceases to be an economic cost.

2.b

What happens if the price of output increases to

𝑝 = $8?

Answer to 2.b

Necessary

8 = 𝑀𝐶(𝑥)

8 = 8𝑥

𝑥 = 1

and sufficient

𝑝 > 𝐴𝐶(𝑥)

8 > 𝐴𝐶(1)

8 > 5

conditions are both satisfied
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Question 2 (Profit Maximization in the Long Run)

A producer has to pay a licence fee of $1 to run his business. If the producer decides not to pay the fee, he essentially

exits the market, in which case his cost of production is equal to zero. If he decides to pay the fee, then his cost of

production will include both the licence fee and a component that depends on the level of output as well as on the

the prices of input. In particular, let’s assume that the (long run) cost function of this producer reads:

𝐶(𝑥,𝑤, 𝑟) =

⎧⎨⎩ 0 if 𝑥 = 0

1 + 1
2𝑤𝑟𝑥

2 if 𝑥 > 0

NOTE:

In the long run, a licence fee is an example of an economic fixed cost. It is an economic cost because in the long

run the producer can decide whether to pay the fee or not (hence it is not a sunk cost). It is a fixed cost because it

does not depend on the level of output. Clearly, once the fee has been paid, it becomes a fixed sunk cost and hence

ceases to be an economic cost.

2.c

The graph below shows the average cost curve of this producer. Find the break even price and complete the graph

so that you eventually identify the supply curve of the producer.

Answer to 2.c

A break even point (a cost minimizing point)

𝐴𝐶(𝑥) = 𝑀𝐶(𝑥)

1/𝑥 + 4𝑥 = 8𝑥

𝑥 = 1/2

Plugging into it into 𝐴𝐶(𝑥) (or 𝑀𝐶(𝑥)) gives

𝐴𝐶(1/2) = 2 + 2 = 4

to sum up

𝑦𝑏𝑒 = 1/2

𝑝𝑏𝑒 = 4
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𝐶(𝑥),𝑀𝐶(𝑥), 𝐴𝐶(𝑥), 𝑝
𝑀𝐶(𝑥)=8x

𝐴𝐶(𝑥) = 1/𝑥 + 4𝑥
Supply curve
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Question 2 (Profit Maximization in the Long Run)

A producer has to pay a licence fee of $1 to run his business. If the producer decides not to pay the fee, he essentially

exits the market, in which case his cost of production is equal to zero. If he decides to pay the fee, then his cost of

production will include both the licence fee and a component that depends on the level of output as well as on the

the prices of input. In particular, let’s assume that the (long run) cost function of this producer reads:

𝐶(𝑥,𝑤, 𝑟) =

⎧⎨⎩ 0 if 𝑥 = 0

1 + 1
2𝑤𝑟𝑥

2 if 𝑥 > 0

NOTE:

In the long run, a licence fee is an example of an economic fixed cost. It is an economic cost because in the long

run the producer can decide whether to pay the fee or not (hence it is not a sunk cost). It is a fixed cost because it

does not depend on the level of output. Clearly, once the fee has been paid, it becomes a fixed sunk cost and hence

ceases to be an economic cost.

2.d

Write the mathematical expression of the supply curve

Answer to 2.d

𝑆(𝑝) =

⎧⎨⎩0 if 𝑝 < 4

8𝑥 if 𝑝 ≥ 0
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𝐶(𝑥),𝑀𝐶(𝑥), 𝐴𝐶(𝑥), 𝑝
𝑀𝐶(𝑥)=8x

𝐴𝐶(𝑥) = 1/𝑥 + 4𝑥
Supply curve
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Question 2 (Profit Maximization in the Long Run)

A producer has to pay a licence fee of $1 to run his business. If the producer decides not to pay the fee, he essentially

exits the market, in which case his cost of production is equal to zero. If he decides to pay the fee, then his cost of

production will include both the licence fee and a component that depends on the level of output as well as on the

the prices of input. In particular, let’s assume that the (long run) cost function of this producer reads:

𝐶(𝑥,𝑤, 𝑟) =

⎧⎨⎩ 0 if 𝑥 = 0

1 + 1
2𝑤𝑟𝑥

2 if 𝑥 > 0

NOTE:

In the long run, a licence fee is an example of an economic fixed cost. It is an economic cost because in the long

run the producer can decide whether to pay the fee or not (hence it is not a sunk cost). It is a fixed cost because it

does not depend on the level of output. Clearly, once the fee has been paid, it becomes a fixed sunk cost and hence

ceases to be an economic cost.

2.e.

What happens to the supply curve that you have represented graphically if 𝑤 decreases? Explain.
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Answer to 2.e
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𝐶(𝑥),𝑀𝐶(𝑥), 𝐴𝐶(𝑥), 𝑝
𝐶(𝑦) = 1 + 4𝑥2

𝑀𝐶(𝑥)=8x

𝐴𝐶(𝑥) = 1/𝑥 + 4𝑥
Supply curve
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Supply curve
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Question 3 (Cost Minimization and Profit Maximization)

True or False? If a producer minimizes costs, she does not necessarily maximize profits; but if she maximizes profits,

she also minimizes costs.

True. Cost minimization does not guarantee that the producer is choosing the specific level of output that maximizes

profits. It only guarantees that if a given level of output is produced, it is produced at the lowest cost (in other words, the

quantity being produced at the lowest cost may not be the quantity that also maximizes profits). On the other hand, if

the producer is maximizing profits, he is necessarily minimizing costs. To see this assume that a given quantity 𝑥′ is not

produced at the lowest cost. Then for the producer there would be a way to produce 𝑥′ at a lower cost and thus increase

profits. Therefore 𝑥′ cannot be the profit maximizing quantity.

17



Sergey Alexeev 23567 Tutorial 7

References

Nechyba, Thomas (2016). Microeconomics: an intuitive approach with calculus. Nelson Education.

url: https://sergeyvalexeev.files.wordpress.com/2018/03/1nechyba_t_microeconomics_an_intuitive_

approach_with_calculus.pdf.

Varian, Hal R (1987). Intermediate Microeconomics; a modern approach.

url: https://sergeyvalexeev.files.wordpress.com/2018/04/varian-intermediate-microeconomics.pdf.

18

https://sergeyvalexeev.files.wordpress.com/2018/03/1nechyba_t_microeconomics_an_intuitive_approach_with_calculus.pdf
https://sergeyvalexeev.files.wordpress.com/2018/03/1nechyba_t_microeconomics_an_intuitive_approach_with_calculus.pdf
https://sergeyvalexeev.files.wordpress.com/2018/04/varian-intermediate-microeconomics.pdf

	Question 1 
	Answer to 1.a
	Answer to 1.b
	Answer to 1.c
	Answer to 1.d


	Question 2 (Profit Maximization in the Long Run)
	Answer to 2.a
	Answer to 2.b
	Answer to 2.c
	Answer to 2.d
	Answer to 2.e


	Question 3 (Cost Minimization and Profit Maximization)

