Proposed solutions for tutorial 6

Intermediate Microeconomics (UTS 23567)*

Preliminary and incomplete
Available at https://backwardinduction.blog/tutoring/
Office hours on Mondays from 9 am till 10 am in building 8 on level 9
Please whatsapp me on 0457871540 so I could meet you at the door, I don't have an internal phone
Also please whatsapp if you have questions, I won't be able to answer through whatsapp but I will give answer during office hours or, since you are very unlikely to have ask a unique question, in the beginning of next tutorial

Sergey V. Alexeev

1 of May, 2018

Navigation

Page numbers are clickable

Question 1 (Perfect substitutes) 3
Answer to 1.a 3
Answer to 1.b 4
Answer to 1.c 5
Answer to 1.d 6
Question 2 (Perfect complements) 8
Answer to 2.a 8
Answer to 2.b 9
Answer to 2.c 10
Question 3 (Cobb-Douglas) 12
Answer to 3.a 12
Answer to 3.b 13
Answer to 3.c 14
Question 4 (Cost minimization) 17
Answer to 4.a 17
Answer to 4.b 18
Answer to 4.c 19
Question 5 (Understanding TRS and least-cost input combination) 21
Answer to 5 21

[^0]Recall that by the definition TRS is something that preserves output

$$
\begin{equation*}
\Delta y \stackrel{\text { set }}{=} 0 \tag{S}
\end{equation*}
$$

and we were taught to isolate an individual contributions of ℓ and k into y which allows to write this

$$
\Delta y=M P L(\ell, k) \Delta \ell+M P K(\ell, k) \Delta k \stackrel{\text { set }}{=} 0
$$

and drop Δy

$$
M P L(\ell, k) \Delta \ell+M P K(\ell, k) \Delta k \stackrel{\text { set }}{=} 0
$$

which upon rearranging is

$$
\frac{\Delta k}{\Delta \ell}=-\frac{M P L(\ell, k)}{M P K(\ell, k)}
$$

and we call those rations $\operatorname{TRS}(\ell, k)$

$$
\frac{\Delta k}{\Delta \ell}=-\frac{M P L(\ell, k)}{M P K(\ell, k)} \stackrel{\text { def }}{=} T R S(\ell, k)
$$

For example if $T R S(\ell, k)=-23$ we can write

$$
\frac{\Delta k}{\Delta \ell}=-23
$$

which is identical to

$$
\begin{equation*}
\Delta k=-23 \Delta \ell \tag{T}
\end{equation*}
$$

recall that we got this ratio from (S), so it still preserves information from it, even if it is not obvious, which allows us to read the ratio as following.

A unit increase in l (i.e. $\Delta l=1$) requires us to drop 23 units of k to have output unchanged

Note that it is easier to calculate $T R S(\ell, k)$ using marginal products, but easier to understand using the ratio of changes

$$
\underbrace{\frac{\Delta k}{\Delta \ell}}_{\begin{array}{c}
\text { to } \\
\text { understand } \\
\mathrm{TRS}
\end{array}}=\underbrace{\mathrm{TRS}}_{\text {to calculate }} \mathrm{-} \mathrm{\frac{MPL(} \mathrm { \ell ,k) }{M P K(\ell, k)}} \stackrel{\text { def }}{=} T R S(\ell, k)
$$

Also check out this thing to develop a better intuition for what is happening. I think UTS has licences for Mathematica for all students.

Question 1 (Perfect substitutes)

Suppose the technology of a producer is described by the following production function:

$$
f(\ell, k)=2 \ell+k
$$

1.a.

Write the equation of the isoquant with level of production 2

Answer to 1.a

$$
f(\ell, k)=2 \ell+k=2
$$

Question 1 (Perfect substitutes)

Suppose the technology of a producer is described by the following production function:

$$
f(\ell, k)=2 \ell+k
$$

1.b

Draw the map of isoquants in a graph with ℓ on the horizontal axis and k on the vertical.

Answer to 1.b

$$
\begin{aligned}
f(\ell, k) & =2 \ell+k=2 \\
k & =2-2 \ell
\end{aligned}
$$

As before keep in mind that we plot the above, but what we actually mean is this

Question 1 (Perfect substitutes)

Suppose the technology of a producer is described by the following production function:

$$
f(\ell, k)=2 \ell+k
$$

1.c

What can you say about the $T R S$ in this case?

Answer to 1.c

$$
T R S(\ell, k)=-M P L / M P K
$$

$$
T R S(\ell, k)=-M P L / M P K=-2 / 1=-2
$$

Question 1 (Perfect substitutes)

Suppose the technology of a producer is described by the following production function:

$$
f(\ell, k)=2 \ell+k
$$

1.d

Derive the expression of the $T R S$ and check that it is consistent with your graphical analysis.

Answer to 1.d

$$
T R S(\ell, k)=-M P L / M P K=-2 / 1=-2
$$

Question 1 (Perfect substitutes): Checklist

Suppose the technology of a producer is described by the following production function:

$$
f(\ell, k)=2 \ell+k
$$

1.a.

Write the equation of the isoquant with level of production 2.
1.b

Draw the map of isoquants in a graph with l on the horizontal axis and k on the vertical.
$1 . \mathrm{c}$
What can you say about the $T R S$ in this case?
1.d

Derive the expression of the $T R S$ and check that it is consistent with your graphical analysis

Question 2 (Perfect complements)

Now suppose the technology of a producer is described by the following production function:

$$
f(\ell, k)=\min \{2 \ell, k\}
$$

2.a.

Write the equation of the isoquant with level of production 2.

Answer to 2.a

$$
f(\ell, k)=\min \{2 \ell, k\}=2
$$

to find ℓ and k we need to set

$$
2 \ell=2
$$

and

$$
k=2
$$

which gives proportions that needs to be preserved to be at production level 2

$$
\ell=1, k=2
$$

There was nothing special about 2 , to get on level 4 we need

$$
\ell=2, k=4
$$

and on 6

$$
\ell=3, k=6
$$

and so on
it also could be expressed as a simple ration

$$
\begin{equation*}
\frac{k}{\ell}=\frac{1}{2} \tag{P}
\end{equation*}
$$

which says that inputs must go in this particular proportion.

Question 2 (Perfect complements)

Now suppose the technology of a producer is described by the following production function:

$$
f(\ell, k)=\min \{2 \ell, k\}
$$

2.b

Draw the map of isoquants in a graph with ℓ on the horizontal axis and k on the vertical.

Answer to 2.b

Again note that we actually mean this

Question 2: PERFECT COMPLEMENTS

Now suppose the technology of a producer is described by the following production function:

$$
f(\ell, k)=\min \{2 \ell, k\}
$$

2.c

What can you say about the $T R S$ in this case?

Answer to 2.c

In the case of production function with $\min \left\{x_{1}, x_{2}\right\}$ a trade such as in (T) is impossible. Inputs should go in a very particular proportion (P)

Question 2 (Perfect complements): Checklist

Suppose the technology of a producer is described by the following production function:

$$
f(\ell, k)=\min \{2 \ell, k\}
$$

2.a.

Write the equation of the isoquant with level of production 2.
2.b

Draw the map of isoquants in a graph with l on the horizontal axis and k on the vertical.
2.c

What can you say about the $T R S$ in this case?

Question 3 (Cobb-Douglas)

- The two cases above represent extreme cases of technology.
- Typically, the degree of substitutability between labour and capital depends on the actual amount of labour and capital used.
- For example, consider the following Cobb-Douglas production function:

$$
f(\ell, k)=\ell k
$$

3.a.

Write the equation of the isoquant with level of production 2.

Answer to 3.a

$$
f(\ell, k)=\ell k=2
$$

Question 3 (Cobb-Douglas)

- The two cases above represent extreme cases of technology.
- Typically, the degree of substitutability between labour and capital depends on the actual amount of labour and capital used.
- For example, consider the following Cobb-Douglas production function:

$$
f(\ell, k)=\ell k
$$

3.b

Draw the map of isoquants in a graph with ℓ on the horizontal axis and k on the vertical.

Answer to 3.b

$$
\begin{aligned}
f(\ell, k) & =\ell k=2 \\
k & =2 / \ell
\end{aligned}
$$

Question 3 (Cobb-Douglas)

- The two cases above represent extreme cases of technology.
- Typically, the degree of substitutability between labour and capital depends on the actual amount of labour and capital used.
- For example, consider the following Cobb-Douglas production function:

$$
f(\ell, k)=\ell k
$$

3.c

What can you say about the $T R S$ in this case?

Answer to 3.c

$$
T R S(\ell, k)=-M P L / M P K=-k / \ell
$$

Question 3 (Cobb-Douglas): Checklist

- The two cases above represent extreme cases of technology.
- Typically, the degree of substitutability between labour and capital depends on the actual amount of labour and capital used.
- For example, consider the following Cobb-Douglas production function:

$$
f(\ell, k)=\ell k
$$

3.a.

Write the equation of the isoquant with level of production 2.
3.b

Draw the map of isoquants in a graph with l on the horizontal axis and k on the vertical.
3.c

What can you say about the $T R S$ in this case?

Cost minimization analytically

$$
\begin{gathered}
\min _{\ell, k} w \ell+r k \\
\text { s.t. } f(\ell, k)=x \\
\mathcal{L}=w \ell+r k-\lambda(f(\ell, k)-x) \\
\mathcal{L}_{\ell} \Rightarrow w-\lambda \frac{\partial f(\ell, k)}{\partial \ell}=0 \\
\mathcal{L}_{k} \Rightarrow r-\lambda \frac{\partial f(\ell, k)}{\partial k}=0 \\
\mathcal{L}_{\lambda} \Rightarrow f(\ell, k)-x=0 \\
\frac{w}{r}=\frac{\partial f(\ell, k) / \partial \ell}{\partial f(\ell, k) / \partial k} \\
T R S(\ell, k)=-w / r
\end{gathered}
$$

Cost minimization graphically

$$
\begin{aligned}
w \ell+r k & \stackrel{\text { set }}{=} C \\
k & =\frac{C}{r}-\frac{w}{r} \ell
\end{aligned}
$$

(a) We fix a level of output at level y

then pick (ℓ, k) that manifests as shifting the dashed line (on left) or a plane (above) in a way that touches a desired level of production y and slopes of the associated isoquant and the isocost are equal. Thus again $T R S(\ell, k)=-w / r$

Question 4 (Cost minimization)

Suppose

$$
\begin{aligned}
& w=1 \\
& r=2
\end{aligned}
$$

For each of the following cases, find the least-cost combination of producing 8 units of output and provide a graphical representation
4.a. The producer is using technology

$$
f(\ell, k)=\ell k
$$

what is the least-cost combination of producing 8 units of output? Represent it graphically?

Answer to 4.a

$$
\begin{aligned}
\left\{\begin{array}{cl}
T R S(\ell, k)=-w / r \\
f(\ell, k) & =x
\end{array}\right. & \Rightarrow\left\{\begin{array}{cl}
-k / \ell & =-1 / 2 \\
\ell k & =8
\end{array}\right. \\
& \Rightarrow\left\{\begin{array}{cl}
\ell & =2 k \\
\ell k & =8
\end{array}\right. \\
& \Rightarrow \begin{cases}\ell & =2 k \\
2 k k & =8\end{cases} \\
& \Rightarrow \begin{cases}\ell & =4 \\
k & =2\end{cases}
\end{aligned}
$$

Question 4 (Cost minimization)

Suppose

$$
\begin{aligned}
& w=1 \\
& r=2
\end{aligned}
$$

For each of the following cases, find the least-cost combination of producing 8 units of output and provide a graphical representation
4.b.

$$
f(\ell, k)=2 \ell+k
$$

what is the least-cost combination of producing 8 units of output? Representit graphically?

Answer to 4.b

Obvious

Question 4 (Cost minimization)

Suppose

$$
\begin{aligned}
& w=1 \\
& r=2
\end{aligned}
$$

For each of the following cases, find the least-cost combination of producing 8 units of output and provide a graphical representation
4.c.

$$
f(\ell, k)=\min \{2 \ell, k\}
$$

what is the least-cost combination of producing 8 units of output? Represent it graphically?

Answer to 4.c

To make

$$
\min \{2 \ell, k\}=8
$$

we need to set

$$
\begin{aligned}
2 \ell & =8 \\
k & =8
\end{aligned}
$$

Question 4 (Cost minimization): checklist

Suppose

$$
\begin{aligned}
& w=1 \\
& r=2
\end{aligned}
$$

For each of the following cases, find the least-cost combination of producing 8 units of output and provide a graphical representation

4.a.

For each of the following cases, find the least-cost combination of producing 8 units of output and provide a graphical representation

$$
f(\ell, k)=\ell k
$$

what is the least-cost combination of producing 8 units of output? Represent it graphically?

4.b.

For each of the following cases, find the least-cost combination of producing 8 units of output and provide a graphical representation

$$
f(\ell, k)=2 \ell+k
$$

what is the least-cost combination of producing 8 units of output? Represent it graphically?
4.c.

For each of the following cases, find the least-cost combination of producing 8 units of output and provide a graphical representation

$$
f(\ell, k)=\min \{2 \ell, k\}
$$

what is the least-cost combination of producing 8 units of output? Represent it graphically?

Question 5 (Understanding TRS and least-cost input combination)

- Suppose a producer's technology is described by a Cobb-Douglas production function.
- Further, suppose that
the opportunity cost of labor equal to 2
and

$$
\text { the producer is producing a desired quantity } x
$$

by using a bundle of inputs at which

$$
T R S=-3
$$

- We know that in this case the producer would fail to minimize his production costs.
- Explain how the producer can save money by altering the composition of his current bundle of inputs.
- For the sake's of your reasoning, denote the current bundle with A and assume that
the price of labor is 1

Answer to 5

We are asked to prove

$$
T R S(\ell, k)=-w / r
$$

by contradiction.
Idea is to show that all decisions with

$$
T R S(\ell, k) \neq-w / r
$$

are not optimal.

Recall that by the definition TRS is

$$
\Delta y=M P L(\ell, k) \Delta \ell+M P K(\ell, k) \Delta k \stackrel{\text { set }}{=} 0
$$

which upon rearranging is

$$
\frac{\Delta k}{\Delta \ell}=-\frac{M P L(\ell, k)}{M P K(\ell, k)} \stackrel{\text { def }}{=} T R S(\ell, k)
$$

So what we call $T R S(\ell, k)$ is something that preserve the fact that $\Delta y=0$ after dropping $\Delta k / \Delta \ell$, but we might as well use that dropped piece, because it is identical to $T R S(\ell, k)$ by definition.

Since we are given that choice

$$
T R S(\ell, k)=-3
$$

let's us assume that it is the optimal. Then by using "the dropped piece"

$$
\frac{\Delta k}{\Delta \ell}=-3
$$

which by rearranging gives

$$
\Delta k=-3 \Delta \ell
$$

or, in words, if 1 extra unit of labor hired 3 units of capital can be dropped.

But we also know that opportunity cost of hiring labor is 2 . Which could be understood as "hiring a unit of labor says no to "hiring" 2 unit of capital". In math this idea take form of this ration

$$
\frac{w}{r}=2
$$

and if we set

$$
r=1
$$

then

$$
w=2
$$

in words, labor is twice more expensive.
So at point

$$
\begin{aligned}
T R S(\ell, k) & \neq-\frac{w}{r} \\
-3 & \neq-2
\end{aligned}
$$

we can hire 1 unit of labor and spend $\$ 2$, but we drop 3 unit of capital which saves us $\$ 3$, thus we save $\$ 1=(\$ 3-\$ 2)$. Which contradicts the fact that the point is optimal.

Question 5 (Understanding TRS and least-cost input combination): checklist

- Suppose a producer's technology is described by a Cobb-Douglas production function.
- Further, suppose that

$$
\text { the opportunity cost of labor equal to } 2
$$

and

$$
\text { the producer is producing a desired quantity } x
$$

by using a bundle of inputs at which

$$
T R S=-3
$$

- We know that in this case the producer would fail to minimize his production costs.
- Explain how the producer can save money by altering the composition of his current bundle of inputs.
- For the sake's of your reasoning, denote the current bundle with A and assume that
the price of labor is 1

References

Nechyba, Thomas (2016). Microeconomics: an intuitive approach with calculus. Nelson Education.
URL: https://sergeyvalexeev.files.wordpress.com/2018/03/1nechyba_t_microeconomics_an_intuitive_ approach_with_calculus.pdf.
Varian, Hal R (1987). Intermediate Microeconomics; a modern approach.
URL: https://sergeyvalexeev.files.wordpress.com/2018/04/varian-intermediate-microeconomics.pdf.

[^0]: *Questions for the tutorial were provided by Massimo Scotti, slide and textbook are by Nechyba (2016). Solutions and commentary are by Sergey Alexeev (e-mail: sergei.v.alexeev@gmail.com). (Btw this is a much better book Varian (1987))

