
Chapter 3 

Some Special Distributions 

3 . 1  The Binomial and Related Distributions 

In Chapter 1 we introduced the uniform distribution and the hypergeometric dis­
tribution. In this chapter we discuss some other important distributions of random 
variables frequently used in statistics. We begin with the binomial and related 
distributions. 

A Bernoulli experiment is a random experiment, the outcome of which can 
be classified in but one of two mutually exclusive and exhaustive ways, for instance , 
success or failure (e.g. , female or male, life or death, nondefective or defective) . 
A sequence of Bernoulli trials occurs when a Bernoulli experiment is performed 
several independent times so that the probability of success, say p, remains the same 
from trial to trial . That is, in such a sequence, we let p denote the probability of 
success on each trial .  

Let X be a random variable associated with a Bernoulli trial by defining it as 
follows: 

X(success) = 1 and X(failure) = 0 . 
That is, the two outcomes, success and failure, are denoted by one and zero, respec­
tively. The pmf of X can be written as 

p(x) = p"' ( 1 - p) 1
-"' , X = 0, 1 , (3 . 1 . 1 ) 

and we say that X has a Bernoulli distribution. The expected value o f  X is 

1 

J.L = E(X) = L xp"' (1 - p) 1
-"' = (0) ( 1 - p) + ( 1 ) (p) = p, 

x=O 

and the variance of X is 
1 

a2 = var(X) L(x - p)2p"' (1 - p) 1
-

x 

x=O 
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It follows that the standard deviation of X is a = yfp(1 - p) . 
In a sequence of n Bernoulli trials, we shall let Xi denote the Bernoulli random 

variable associated with the ith trial . An observed sequence of n Bernoulli trials 
will then be an n-tuple of zeros and ones. In such a sequence of Bernoulli trials, we 
are often interested in the total number of successes and not in the order of their 
occurrence. If we let the random variable X equal the number of observed successes 
in n Bernoulli trials , the possible values of X are 0, 1 , 2, . . .  , n. If x successes occur, 
where x = 0, 1 ,  2, . . .  , n, then n - x failures occur. The number of ways of selecting 
the x positions for the x successes in the n trials is 

(:) = x! (n
n� x) ! " 

Since the trials are independent and the probabilities of success and failure on 
each trial are, respectively, p and 1 - p, the probability of each of these ways is 
px (1 - p)n-x . Thus the pmf of X, say p(x) , is the sum of the probabilities of these (:) mutually exclusive events; that is, { (n) x (1 )n-x p(x) = Ox 

P - P 

Recall, if n is a positive integer, that 

x = 0, 1 ,  2 , . . .  , n 
elsewhere. 

(a + b)n = � (:) bxan-x . 

Thus it is clear that p(x) � 0 and that 

�p(x) = � (:)px (l - Pt-x 

= [( 1 - p) + p]n = 1 . 
Therefore, p( x) satisfies the conditions o f  being a pmf o f  a random variable X of 
the discrete type. A random variable X that has a pmf of the form of p(x) is said 
to have a binomial distribution, and any such p(x) is called a binomial pmf. A 
binomial distribution will be denoted by the symbol b(n , p) .  The constants n and p 
are called the parameters of the binomial distribution. Thus, if we say that X is 
b(5 , ! ) ,  we mean that X has the binomial pmf 

p(x) = { (!) (it ( � ) 5-x X =  0, 1 , . . .  ' 5 (3 . 1 .2 ) 
0 elsewhere. 

The mgf of a binomial distribution is easily obtained as follows, 

M(t) = �etxp(x) = �etx (:)px (l - pt-x 

� (:) (pet )x (1 _ p)n-x 

= [ ( 1 - p) + pett 
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for all real values of t. The mean p, and the variance a2 of X may be computed 
from M (t) .  Since 

and 

if follows that 
p, = M'(O) = np 

and 
a2 = M"(O) - p,2 

= np + n(n - 1)p2 - (np)2 = np(1 - p) . 

Example 3 . 1 . 1 .  Let X be the number of heads (successes) in n =  7 independent 
tosses of an unbiased coin. The pmf of X is 

p(x) = { (�) (!r '  (1 - !) T-x X =  0, 1, 2, . . .  , 7 
0 elsewhere. 

Then X has the mgf 
M(t) = ( ! + !et?, 

has mean p, = np = � ' and has variance a2 = np(1 - p) = � · Furthermore, we have 

and 

1 
1 7 8 P(O � X � 1) = LP(X) = 128 

+ 128 
= 128 x=O 

7! ( 1 ) 5 ( 1 ) 2 21 P(X = 5) = p(5) = 
5 !2 !  2 2 = 128

. • 

Most computer packages have commands which obtain the binomial probabili­
ties . To give the R (Ihaka and Gentleman, 1996) or S-PLUS (S-PLUS, 2000) com­
mands, suppose X has a b(n, p) distribution. Then the command dbinom ( k , n , p) 
returns P(X = k) , while the command pbinom (k , n , p) returns the cumulative 
probability P(X � k) . 

Example 3 . 1 .2 .  If the mgf of a random variable X is 

then X has a binomial distribution with n = 5 and p = � ;  that is, the pmf of X is 

Here J.L = np = � and a2 = np(1  - p) = 19° . • 

X = 0, 1 , 2 ,  . . .  , 5 
elsewhere. 
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Example 3.1 .3 .  If Y is b(n, � ) ,  then P(Y � 1) = 1 - P(Y = 0) = 1 - ( � )n . 
Suppose that we wish to find the smallest value of n that yields P(Y � 1 )  > 0 .80 .  
We have 1 - ( � )n > 0 .80 and 0 .20 > ( � )n . Either by inspection or by use of 
logarithms, we see that n = 4 is the solution. That is , the probability of at least 
one success throughout n = 4 independent repetitions of a random experiment with 
probability of success p = � is greater than 0.80. • 

Example 3.1 .4. Let the random variable Y be equal to the number of successes 
throughout n independent repetitions of a random experiment with probability p 
of success. That is, Y is b(n, p) .  The ratio Y/n is called the relative frequency of 
success. Recall expression ( 1 . 10 .3) , the second version of Chebyshev's inequality 
(Theorem 1 . 10 .3) .  Applying this result, we have for all c: > 0 that 

p ( I 
Y _ PI � c:) � Var(Y/n) = p( 1 - p)

. n c:2 nc:2 

Now, for every fixed c: > 0, the right-hand member of the preceding inequality is 
close to zero for sufficiently large n. That is, 

and 

Since this is true for every fixed c: > 0, we see, in a certain sense, that the relative 
frequency of success is for large values of n, close to the probability of p of success . 
This result is one form of the Weak Law of Large Numbers. It was alluded to in 
the initial discussion of probability in Chapter 1 and will be considered again, along 
with related concepts, in Chapter 4. • 

Example 3 .1 .5 .  Let the independent random variables X1 , X2 , Xa have the same 
cdf F(x) . Let Y be the middle value of X1 , X2 , X3 .  To determine the cdf of Y, say 
Fy (y) = P(Y � y) ,  we note that Y � y if and only if at least two of the random 
variables X1 , X2 , X3 ru·e less than or equal to y. Let us say that the ith "trial" 
is a success if Xi � y, i = 1, 2, 3; here each "trial" has the probability of success 
F(y) .  In this terminology, Fy (y) = P(Y � y) is then the probability of at least two 
successes in three independent trials. Thus 

Fy (y) = G) [F(y) ] 2 [1 - F(y) ]  + [F(y)] 3 • 

If F(x) is a continuous cdf so that the pdf of X is F' (x) = f (x) , then the pdf of Y 
is 

Jy (y) = F;, (y) = 6 [F(y) ] [1 - F(y) ]f (y) .  • 

Example 3.1 .6 .  Consider a sequence of independent repetitions of a random ex­
periment with constant probability p of success. Let the random variable Y de­
note the total number of failures in this sequence before the rth success, that is, 
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Y + r is equal to the number of trials necessary to produce exactly r successes. 
Here r is a fixed positive integer. To determine the pmf of Y, let y be an ele­
ment of {y : y = 0, 1 , 2, . . .  } .  Then, by -the multiplication rule of probabilities , 
P(Y = y) = g(y) is equal to the product of the probability 

(y + r - 1)pr- 1 (1 - p)Y r - 1 
of obtaining exactly r - 1 successes in the first y + r - 1 trials and the probability 
p of a success on the (y + r )th trial. Thus the pmf of Y is 

(3 . 1 .3) 

A distribution with a pmf of the form py (y) is called a negative binomial dis­
tribution; and any such py (y) is called a negative binomial pmf. The distribution 
derives its name from the fact that py (y) is a general term in the expansion of 
pr [1 - (1 - p)] -r . It is left as an exercise to show that the mgf of this distribution 
is M(t) = pr [1 - (1 - p)et J -r , for t <  - ln( 1 - p) . If r = 1, then Y has the pmf 

py (y) = p(1 - p)Y , y = 0, 1 , 2 , . . .  , (3. 1 .4) 

zero elsewhere, and the mgf M(t) = p[1 - (1 - p)et J - 1 . In this special case, r = 1 ,  
we say that Y has a geometric distribution of the form. • 

Suppose we have several independent binomial distributions with the same prob­
ability of success . Then it makes sense that the sum of these random variables is 
binomial , as shown in the following theorem. Note that the mgf technique gives a 
quick and easy proof. 

Theorem 3 .1 . 1 .  Let X1 . X2 , • • .  , Xm be independent mndom variables such that 
Xi has binomial b( ni , p) distribution, for i = 1 ,  2, . . .  , m .  Let Y = :L;�1 Xi . Then 
Y has a binomial b(:L;�1 ni , p) distribution. 
Proof: Using independence of the Xis and the mgf of Xi , we obtain the mgf of Y 
as follows: 

m m 

i=1 i= 1 

Hence, Y has a binomial b(:L;�1 ni , P) distribution. • 

The binomial distribution is generalized to the multinomial distribution as fol­
lows. Let a random experiment be repeated n independent times. On each repeti­
tion, the experiment results in but one of k mutually exclusive and exhaustive ways, 
say C1 . C2 , . . .  , Ck . Let Pi be the probability that the outcome is an element of Ci 
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and let Pi remain constant throughout the n independent repetitions, i = 1 , 2, . . .  , k . 
Define the random variable Xi to be equal to the number of outcomes that are el­
ements of Ci , i = 1 , 2 ,  . . .  , k - 1 . Furthermore, let Xl l X2 , . . .  , Xk-1 be nonnegative 
integers so that X1 + x2 + · · · + Xk- 1 :$ n. Then the probability that exactly x1 ter­
minations of the experiment are in Cl l . . .  , exactly Xk- 1 terminations are in Ck-l l 
and hence exactly n - (x1 + · · · + Xk-d terminations are in Ck is 

where Xk is merely an abbreviation for n - (x 1  + · · · + Xk-1 ) .  This is the multi­
nomial pmf of k - 1 random variables Xl l X2 , . . .  , Xk- 1 of the discrete type. To 
see that this is correct , note that the number of distinguishable arrangements of 
x1 C1s , x2 C2s, . . .  , Xk Cks is 

( n ) (n - x1) . . . (n - x1 - · · · - Xk-2) 
= 

n! 
X1 X2 Xk-1 X1 !x2 ! ' '  ' Xk ! 

and the probability of each of these distinguishable arrangements is 

Hence the product of these two latter expressions gives the correct probability, which 
is an agreement with the formula for the multinomial pmf. 

When k = 3, we often let X =  X1 and Y =  X2 ; then n - X - Y = X3 . We say 
that X and Y have a trinomial distribution. The joint pmf of X and Y is 

( ) _ n ! X y n-X-y P x, Y - 1 I (  ) I P1P2P3 , 
x .y. n - x - y . 

where x and y are nonnegative integers with x+y :$ n, and P1 , P2 , and pg are positive 
proper fractions with p1 + P2 + p3 = 1 ;  and let p(x, y) = 0 elsewhere. Accordingly, 
p(x , y) satisfies the conditions of being a joint pmf of two random variables X and 
Y of the discrete type; that is, p(x, y) is nonnegative and its sum over all points 
(x , y) at which p(x , y) is positive is equal to (p1 + P2 + pg )n = 1 .  

If n is a positive integer and al l a2 , a3 are fixed constants, we have 

(3. 1 .5 ) 
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Consequently, the mgf of a trinomial distribution, in accordance with Equation 
(3. 1 . 5 ) , is given by 

n n-x I � � n. (p1 eh )x (p2et2 )Ypn-x-y L..t L..t x!y! (n - x - y) ! 3 x=O y=O (p1 et1 + P2et2 + P3t , 

for all real values of t1 and t2 . The moment-generating functions of the marginal 
distributions of X and Y are, respectively, 

and M(O, t2 ) = (p1 + P2et2 + P3t = ( ( 1 - P2 ) + P2et2t · 
We see immediately, from Theorem 2 .5 . 5 that X and Y are dependent random 
variables. In addition, X is b(n, p1 ) and Y is b(n , p2 ) .  Accordingly, the means and 
variances of X and Y are, respectively, JL1 = np1 , JL2 = np2 , u� = np1 (1 - pl ) ,  and 
u� = np2 (1 - P2 ) · 

Consider next the conditional pmf of Y, given X = x. We have 

{ 
( ) Y  ( ) n-x-y (n-x) f __l?L ...J!L - 0 1 P2 1 1 (y ix) = y! (n-x-y)! 1-pl 1-Pl y - ' ' . . .  ' n - X 

0 elsewhere. 

Thus the conditional distribution of Y, given X =  x, is b [n - x ,p2/(1 - P1 ) ] .  Hence 
the conditional mean of Y, given X = x, is the linear function 

E(Yix) = (n - x) (�) . 1 - p1 
Also , the conditional distribution of X, given Y = y, is b (n - y ,p ! /( 1 - P2 ) ] and 
thus 

E(X iy) = (n - y) ( 1 �1PJ . 

Now recall from Example 2 .4 .2 that the square of the correlation coefficient p2 is 
equal to the product of -p2/(1 - pl )  and -p! /(1 - P2 ) ,  the coefficients of x and 
y in the respective conditional means. Since both of these coefficients are negative 
(and thus p is negative) , we have 

P1P2 p = - (1 - P1 ) ( 1 - P2 ) . 
In general , the mgf of a multinomial distribution is given by 

M(tl o · · · , tk- 1 )  = (p1 et1 + · · · + Pk- 1 etk- l + Pk )n 
for all real values of t1 o  t2 ,  . . .  , tk- 1 · Thus each one-variable marginal pmf is bino­
mial , each two-variable marginal pmf is trinomial, and so on. 




