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Preface to the Classics Edition

During the fifteen years since the first edition of A First Course in Order Statis-
tics appeared, there have been more than 1500 papers published relating to
order statistics (based on a key word search in MathSciNet), i.e., about 100
papers a year. We take this as strong evidence that basic knowledge of the the-
ory of order statistics is, more than ever, a requisite component in the toolbox
of any practicing statistician and an essential part of the training requirements
for undergraduate and graduate students in the field. This edition of the First
Course will, we believe, provide sufficient background knowledge to enable
the reader to understand much of the current order statistics literature. We hope
that it will prepare the next generation of students and researchers to contribute
to the burgeoning flow of fascinating new results concerning ordered statistical
data. We are grateful to the many alert readers who identified typographical
and technical errors in the first edition of this book. We will continue to be
grateful for any reports on further gaffes that have not been noted and included
in the errata list that accompanies this second edition.

For more extensive coverage of the field of order statistics, we continue to
recommend that readers consult the latest edition of H. A. David's Order Statis-
tics, which, as of this writing, is the third edition, coauthored by H. N. Nagaraja.
We also list a few other resources for further reading.

As we did in the first edition, we urge readers to explore the realm of order
statistics. We continue to be confident that once you bite into it, you will be
hooked for life.

BARRY C. ARNOLD, Riverside, California
N. BALAKRISHNAN, Hamilton, Ontario

H. N. NAGARAJA, Columbus, Ohio

October 25, 2007
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Preface

Years ago the study of order statistics was a curiosity. The appearance of
Sarhan and Greenberg's edited volume in 1962, and H. A. David's treatise on
the subject in 1970 and its subsequent revision in 1981 have changed all that.
Some introduction to the topic is surely needed by every serious student of
statistics. A one-quarter course at the advanced undergraduate level or
beginning graduate level seems to be the norm. Up until now the aforemen-
tioned book by Professor David has been used both as a text and as a
growing survey and introduction to the by now enormous order statistics
literature. It has served well as a text, but the task grows more daunting as
the literature grows. To be an encyclopedia or to be a text, that is the
question. We believe that it is time to write an introductory text in the area.

There are certain topics that should and can be introduced in a one-quarter
course. The coverage should be reasonably rigorous but not exhaustive. The
David encyclopedia is available on the shelf, and students will expect to have
frequent recourse to it. However, we have striven to write a textbook in the
sense that at the end of the course the instructor can justifiably expect that
the students will understand and be familiar with everything in the book. It
should provide a springboard into further applications and research involving
order statistics, but it should be restricted to "what everyone needs to know."

We have prepared this text bearing in mind students in mathematical
sciences at the first-year graduate and advanced undergraduate levels. The
prerequisite is a two-quarter or semester course sequence in introductory
mathematical statistics. We have been successful in covering most of the
topics discussed in this book in a one-quarter or semester course at our
respective institutions. We hope this treatment will also interest students
considering independent study and statisticians who just want to find out
some key facts about order statistics. The exercises at the end of chapters
have been designed to let the students have hands-on experience to help
them develop a better understanding and appreciation of the concepts
discussed in the text. They are naturally of varying degrees of difficulty; for

xv

 



xvi PREFACE

the more challenging exercises we have included the relevant references to
assist the disheartened student. Improvements to our presentation are always
possible and we welcome any suggestions or corrections from the users of this
book.

We have not tried to uniformly assign priority for published results. When
references are given, it is with the understanding that they may be illuminat-
ing. Most of the material in the book is in the order statistics "public
domain" by now. A few new results or new view points are sprinkled in, and
a few, hopefully, tantalizing questions are left open.

If we have been successful, the student on completing this introductory
volume will cry out for more. There is, of course, much more. That is why this
is a first course. A sequel to this book is at the planning stage. It will
hopefully probe further, building on the present material, exploring fascinat-
ing byways which perhaps not everyone needs to know.

The study of order statistics is habit forming. We hope this book will
spread the addiction.

BARRY C. ARNOLD

N. BALAKRISHNAN
H. N. NAGARAJA
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f„(X):
f(x):

Fi l, i2, . .., ik :n(x i', x^2,.. . ,

F- '(u):

F(x):
xj ):

Fi:n(x):

binomial distribution with number of trials N
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pmf or pdf of Xi : „
joint pmf or pdf of Xi , : „,..., Xik: „, for 1 < i 1

< ... < ik <n
pmf or pdf of R„
probability mass function or probability density
function
joint cdf of Xii: „,..., Xik: „ for 1 < i i < ••-
< ik <n
inverse cumulative distribution function,
sup{x: F(x) < u}, 0 < u < 1,
with F- '(1) = sup(F- '(u): u < 1)
cumulative distribution function, Pr(X < x)
joint cdf of Xi : „ and Xi: „ for i < j
cdf of Xi:n

, 	
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F(y; 8): cdf of a random variable involving parameter 0
F„(x): cdf of R,,

F(x — ): P(X < x)
Geometric(p): geometric ry or distribution with pmf

f(x) = ( 1 — p)pr ,	 x = 0,1,2,...

1a(a, b): incomplete beta function,

a	 1

fo B(a, 
b)  to-1(1 — 1) b-1 dt ,

iff if and only if
i.i.d.: independent and identically distributed

N(µ, v 2 ): normal distribution with mean
and variance a 2

Pareto(a): Pareto IV with cdf

F(y; a) = 1 — y -°,	 y > 1

pdf: probability density function or density function
pmf: probability mass function

Poisson(A): Poisson distribution with mean A
R,,: nth record value
iv: random variable
S,,: linear function of order statistics, E;',. 1 a, „X;X .

T„: nth record time
Population median, F -1 (0.5)

U : n: ith order statistic from Uniform(0, 1)
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x: realization of X
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X: Population random variable
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X„: sample median given by

X(n+1)/2: n

1
z(Xn/2:n + Xn/2+1:11) ,

for 0<a<1
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CHAPTER 1

Introduction and Preview

1.1. ORDER STATISTICS

Suppose that (X 1 , ... , Xn) are n jointly distributed random variables. The
corresponding order statistics are the Xi 's arranged in nondecreasing order.
The smallest of the X,'s is denoted by X 1 ,,,, the second smallest is denoted
by X2 ,,,, ... , and, finally, the largest is denoted by X n : n . Thus X I : n < X2 .,,

•	 < Xn:n . The focus of the present book is on the study of such
so-called variational sequences. A remarkably large body of literature has
been devoted to the study of order statistics. Developments through the early
1960s were synthesized in the volume edited by Sarhan and Greenberg
(1962a), which, because of its numerous tables, retains its usefulness even
today. Harter (1978-1992) has recently prepared an eight-volume annotated
bibliography with an excess of 4700 entries. Needless to say, we will need to
exercise a degree of selectivity in preparing an introductory text. Our goal is
to introduce the student to several of the main themes in the order statistics
literature. After reading this introductory text, it is hoped that some readers
will be enticed to seek more detailed and more comprehensive discussion of
the topics. H. A. David's (1981) masterful encyclopedic survey is a wonderful
starting point. Fascinating related odysseys are described in Galambos (1978),
Harter (1970), Barnett and Lewis (1984), Castillo (1988), and Balakrishnan
and Cohen (1991). Our intention is to whet the appetite; the above authors
will serve full-course meals.

In the definition of order statistics we did not require that the X,'s be
identically distributed, nor did we require that they be independent. Addi-
tionally, it was not assumed that the associated distributions be continuous,
nor that densities need exist. Many of the classical results dealing with order
statistics were originally derived in more restrictive settings. It was often
assumed that the X,'s were independent and identically distributed (hence-
forth i.i.d.) with common continuous (cumulative) distribution function F(x),
and often assumed further to have a density function f(x). Undoubtedly
most readers first encountered order statistics with such assumptions. For
many, the first encounter with order statistics was doubly painful in that, not

1

 



2	 INTRODUCTION AND PREVIEW

only was the concept novel, but the derivation of the joint density of the
order statistics was used as a convenient example of the use of Jacobians in a
many-to-one mapping situation. No wonder the phrase "order statistics" gets
few smiles from those emerging from the Hogg and Craig (1978), Mood,
Graybill, and Boes (1974), Bickel and Doksum (1977), Dudewicz and Mishra
(1988), and Casella and Berger (1990) trenches. The end result of that
analysis, confusing though it seemed at the time, was a disarmingly attractive
expression for the joint density of the order statistics corresponding to an
i.i.d. sample from an absolutely continuous distribution with density f(x),
namely,

Xn:n(x,, X2,..., Xn) = n! flf(xi) ,
1=1

—oo<x,<x 2 < ••• <x n <oo. (1.1.1)

Much of the material in the present book takes (1.1.1) as a starting point. In
several instances results are available for non-i.i.d. or nonabsolutely continu-
ous distributions. These will be appropriately noted. As much as possible, we
will try to relax the i.i.d. and/or absolute continuity conditions, but the
model described by (1.1.1) is the most easily visualized. For example, no
tantalizing ties bedevil one in such settings.

There is an alternative way to visualize order statistics that, although it
does not necessarily yield simple expressions for the joint density (which may
of course not even exist), does allow simple derivation of many important
properties of order statistics. It can be called the quantile function represen-
tation. In this setting we do consider i.i.d. Xi's, but we allow their common
distribution F to be completely arbitrary, that is, just nondecreasing and
right continuous with F(— co) = 0 and F(c) = 1. The associated quantile
function (or inverse distribution function, if you wish) is defined by

F-1 (y) = sup{x: F(x) sy).	 (1.1.2)

Now it is well known that if U is a Uniform(0, 1) random variable, then
F.-1(U) has distribution function F. Moreover, if we envision U,, ... , Un as
being i.i.d. Uniform (0, 1) random variables and X I , X2 , ... , Xi, as being i.i.d.
random variables with common distribution F, then

(XI:n , ...,Xn:n) °_ (F ^(UI :n ),...,F-'(Un:n)),	 (1.1.3)

where	 is to be read as "has the same distribution as." In the absolutely
continuous case, the representation (1.1.3) allows one to derive the joint
density (1.1.1) from the corresponding simpler joint density of uniform order
statistics, namely,

fu^.n 	 un.n(u,,..., u n} = n!,	 0 < u, < • • • < u n < 1. (1.1.4)

In the nonabsolutely continuous case, the representation (1.1.3) frequently
permits simple derivations of moments, mixed moments, and other distribu-

fXl: n 	
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tional features of order statistics. Thus, for example,

E(X,:n) = 4'F-1(u) fu ,(u) du.	 (1.1.5)

The representation X; : n = F- `(U; . n ) is also useful in deriving the asymp-
totic distribution of X;:n . More details will be found in Chapter 8, but
a hint of the possibilities is provided by the following observations. Consid-
er X[npl:n where p E (0, 1) and n is large (here [np] denotes the integer
part of np). Elementary computations beginning with (1.1.1) yield U;:n

Beta(i, n + 1 - i). If i = [np], then U[np1:n Beta(np, n(1 - p)), and this
Beta random variable has the same distribution as E7= 1 l;/(E7= 1 V + E"_ 1 W,.),
where the l ;'s are i.i.d. F(p, 1) and the W's (independent of the [ ;'s) are i.i.d.
T(1 - p, 1). An application of the multivariate central limit theorem and the
delta method [see Bishop, Fienberg, and Holland (1975, Chapter 14)] yields

r	 1 
N1 P, n P( 1

 - P))-

From this, if we assume that F has a density f, the delta method again may
be applied to yield

n [f(F -I (P))] 2 •

Extreme order statistics of course will have different nonnormal limiting
distributions. Tippett (1925) may have been the first to guess the nature of
such limiting distributions. The rigorous development of the solution is
to be found in Fisher and Tippett (1928) and Gnedenko (1943). Anticipating
again material in Chapter 8 we can guess that the nature of the distribution
of X,,.,, will depend only on the upper tail of F. If, for example, F(x)
1 - F(x) - cx -°[x -) co], then we can argue as follows:

z
P(bnXn:n < x) = P Xn:n < b )

n

=[
F(brt ) 1

= [ n J

1 — F(b )l 
n

[ i _ (f ) —art .

1	 p(1 - p)
X[n p , : n ^^ N F-^ ( P) ,

If we then choose b,,= n -1 /a, then the last expression becomes [1 - x-°/n]n,
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which converges to a -x -°, often called the extreme value distribution of the
Frechet type.

Rather than continue to anticipate theoretical results to be introduced in
later chapters, it is undoubtedly time to convince the reader that order
statistics are of more than theoretical interest. Why have statisticians cared
about order statistics? In what data-analytic settings do they naturally arise?
An array of such situations will be catalogued in the next section.

1.2. HERE, THERE, AND EVERYWHERE

When asked to suggest a brief list of settings in which order statistics might
have a significant role, none of our colleagues had difficulty; the only problem
was that their lists were not always brief! The following list, culled from their
suggestions, is not exhaustive, but should serve to convince the reader that
this text will not be focusing on some abstract concepts of little practical
utility. Rather, the reader may realize that in some cases it will just be new
names for old familiar concepts, and will share the delight of the man
entranced to discover he had been speaking prose all of his life.

1. Robust Location Estimates. Suppose that n independent measurements
are available, and we wish to estimate their assumed common mean. It has
long been recognized that the sample mean, though attractive from many
viewpoints, suffers from an extreme sensitivity to outliers and model viola-
tions. Estimates based on the median or the average of central order
statistics are less sensitive to model assumptions. A particularly well-known
application of this observation is the accepted practice of using trimmed
means (ignoring highest and lowest scores) in evaluating Olympic figure
skating performances.

2. Detection of Outliers. If one is confronted with a set of measurements
and is concerned with determining whether some have been incorrectly made
or reported, attention naturally focuses on certain order statistics of the
sample. Usually the largest one or two and/or the smallest one or two are
deemed most likely to be outliers. Typically we ask questions like the
following: If the observations really were i.i.d., what is the probability that the
largest order statistic would be as large as the suspiciously large value we
have observed?

3. Censored Sampling. Fifty expensive machines are started up in an
experiment to determine the expected life of a machine. If, as is to be hoped,
they are fairly reliable, it would take an enormously long time to wait for all
machines to fail. Instead, great savings in time and machines can be effected
if we base our estimates on the first few failure times (i.e., the first few order
statistics from the conceptual sample of i.i.d. failure times). Note that we may
well remove unfailed machines from the testing environment for sale and/or
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modification. Only the failed items are damaged and/or destroyed. Such
procedures are especially important from a destructive testing viewpoint
(how many Mercedes-Benz motors should you burn up in oil breakdown
experiments?). From an ethical viewpoint, even more pressure is put on the
medical researcher in his or her efforts to learn about the efficacy of
treatments with a minimum of actual (patient) failures.

4. Waiting for the Big One. Disastrous floods and destructive earthquakes
recur throughout history. Dam construction has long focused on so called
100-year floods. Presumably the dams are built big enough and strong enough
to handle any water flow to be encountered except for a level expected to
occur only once every 100 years. Architects in California are particularly
concerned with construction designed to withstand "the big one," presum-
ably an earthquake of enormous strength, perhaps a "100-year quake."
Whether one agrees or not with the 100-year disaster philosophy, it is obvious
that designers of dams and skyscrapers, and even doghouses, should be
concerned with the distribution of large order statistics from a possibly
dependent, possibly not identically distributed sequence.

5. Strength of Materials. The adage that a chain is no stronger than its
weakest link underlies much of the theory of strength of materials, whether
they be threads, sheets, or blocks. By considering failure potential in in-
finitesimally small sections of the material, one quickly is led to strength
distributions associated with limits of distributions of sample minima. Of
course, if we stick to the finite chain with n links, its strength would be the
minimum of the strengths of its n component links, again an order statistic.

6. Reliability. The example of a cord composed of n threads can be
extended to lead us to reliability applications of order statistics. It may be
that failure of one thread will cause the cord to break (the weakest link), but
more likely the cord will function as long as k (a number less than n) of the
threads remain unbroken. As such it is an example of a k out of n system
commonly discussed in reliability settings. With regard to tire failure, the
automobile is often an example of a 4 out of 5 system (remember the spare).
Borrowing on terminology from electrical systems, the n out of n system is
also known as a series system. Any component failure is disastrous. The 1 out
of n system is known as a parallel system; it will function as long as any of the
components survives. The life of the k out of n system is clearly Xn -k l : n
the (n — k + 1)st largest of the component lifetimes, or, equivalently, the
time until less than k components are functioning. Other more complicated
system structures can be envisioned. But, in fact, they can be regarded as
perhaps complicated hierarchies of parallel and series subsystems, and the
study of system lifetime will necessarily involve distributions of order statis-
tics.

7. Quality Control. Take a comfortable chair and watch the daily produc-
tion of Snickers candy bars pass by on the conveyor belt. Each candy bar
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should weigh 2.1 ounces; just a smidgen over the weight stated on the
wrapper. No matter how well the candy pouring machine was adjusted at the
beginning of the shift, minor fluctuations will occur, and potentially major
aberrations might be encountered (if a peanut gets stuck in the control
valve). We must be alert for correctable malfunctions causing unreasonable
variation in the candy bar weight. Enter the quality control man with his X
and R charts or his median and R charts. A sample of candy bars is weighed
every hour, and close attention is paid to the order statistics of the weights so
obtained. If the median (or perhaps the mean) is far from the target value,
we must shut down the line. Either we are turning out skinny bars and will
hear from disgruntled six-year-olds, or we are turning out overweight bars
and wasting money (so we will hear from disgruntled management). Atten-
tion is also focused on the sample range, the largest minus the smallest
weight. If it is too large, the process is out of control, and the widely
fluctuating candy bar weights will probably cause problems further down the
line. So again we stop and seek to identify a correctable cause before
restarting the Snickers line.

8. Selecting the Best. Field trials of corn varieties involved carefully bal-
anced experiments to determine which of several varieties is most productive.
Obviously we are concerned with the maximum of a set of probably not
identically distributed variables in such a setting. The situation is not unlike
the one discussed earlier in the context of identification of outliers. In the
present situation, the outlier (the best variety) is, however, good and merits
retention (rather than being discarded or discounted as would be the case in
the usual outliers setting). Another instance in biology in which order
statistics play a clear role involves selective breeding by culling. Here perhaps
the top 10% with respect to meatiness of the animals in each generation are
retained for breeding purposes. A brief discussion of this topic will be found
in Section 8.6.

9. Inequality Measurement. The income distribution in Bolivia (where a
few individuals earn most of the money) is clearly more unequal than that of
Sweden (where progressive taxation has a leveling effect). How does one
make such statements precise? The usual approach involves order statistics
of the corresponding income distributions. The particular device used is
called a Lorenz curve. It summarizes the percent of total income accruing to
the poorest p percent of the population for various values of p. Mathemati-
cally this is just the scaled integral of the empirical quantile function, a
function with jump Xi , at the point i/n; i = 1, 2, ... , n (where n is the
number of individual incomes in the population). A high degree of convexity
in the Lorenz curve signals a high degree of inequality in the income
distribution.

10. Olympic Records. Bob Beamon's 1968 long jump remains on the
Olympic record book. Few other records last that long. If the best perfor-
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mances in each Olympic Games were modeled as independent identically
distributed random variables, then records would become more and more
scarce as time went by. Such is not the case. The simplest explanation
involves improving and increasing populations. Thus the 1964 high jumping
champion was the best of, say, N I active international-caliber jumpers. In
1968 there were more high-caliber jumpers of probably higher caliber. So we
are looking, most likely, at a sequence of not identically distributed random
variables. But in any case we are focusing on maxima, that is, on certain
order statistics. More details on record values and in particular record values
in improving populations will be found in Chapter 9. Of course, such models
actually make the survival of Beamon's record even more problematic.

11. Allocation of Prize Money in Tournaments. At the end of the annual
Bob Hope golf tournament the player with the lowest score gets first prize.
The second lowest score gets second prize, etc. In 1991 the first five prizes
were: $198,000, $118,800, $74,800, $52,800, and $44,000. Obviously we are
dealing with order statistics here. Presumably the player with the highest
ability level will most likely post the lowest score. But, of course, random
fluctuations will occur, and it is reasonable to ask what is the most equitable
way to divide the prize money among the low-scoring golfers. Winner take all
is clearly not in vogue, so some monotonically decreasing sequence of
rewards must and has been determined. Is the one used a fair one? A related
question involves knockout tournaments. In the absence of seeding, and
assuming that a stronger player always beats a weaker player, the ability rank
of the winner is always 1, but the ability rank of the loser in the final will
often be greater than 2 (as the second best player may well have been
knocked out in an earlier round by the eventual winner.) Again, we may ask
what is an equitable reward system for such a tournament. Any discussion of
complete or incomplete tournaments will involve consideration of order
statistics.

12. Characterizations and Goodness of Fit. The exponential distribution is
famous for its so-called lack of memory. The usual model involves a light
bulb or other electronic device. The argument goes that a light bulb that has
been in service 20 hours is no more and no less likely to fail in the next
minute than one that has been in service for, say, 5 hours, or even, for that
matter, than a brand new bulb. Such a curious distributional situation is
reflected by the order statistics from exponential samples. For example, if
X1 , ... , X„ are i.i.d. exponential, then their spacings (X, : n — Xi_ i : n ) are
again exponential and, remarkably, are independent. It is only in the case of
exponential random variables that such spacings properties are encountered.
A vast literature of exponential characterizations and related goodness-of-fit
tests has consequently developed. We remark in passing that most tests of
goodness of fit for any parent distribution implicitly involve order statistics,
since they often focus on deviations between the empirical quantile function
and the hypothesized quantile function.

 





CHAPTER 2

Basic Distribution Theory

2.1. INTRODUCTION

In this chapter we discuss in detail the basic distribution theory of order
statistics by assuming that the population is absolutely continuous. Many of
these derivations for the case when the population is discrete are handled in
Chapter 3.

In Section 2.2 we derive the cumulative distribution function and probabil-
ity density function of a single order statistic, X. In Section 2.3 we similarly
derive the joint cumulative distribution function and joint density function of
two order statistics, X1: ,, and Xi: „. Due to the importance of the results
given in Sections 2.2 and 2.3, we also present some interesting and useful
alternate derivations of these formulas. In Section 2.4 we establish some
distributional properties of order statistics and show, in particular, that the
order statistics form a Markov chain. In Section 2.5 we discuss the derivation
of the distributions of some specific statistics such as the sample median, the
range, the quasiranges, and the spacings or the generalized quasiranges. We
make use of the uniform and the power-function distributions in order to
illustrate the various results developed in this chapter.

2.2. DISTRIBUTION OF AN ORDER STATISTIC

As mentioned in the last chapter, let us assume that X 1 , X2 , ... , X is a
random sample from an absolutely continuous population with probability
density function (density function pdf) f(x) and cumulative distribution
function (cdf) F(x); let X1: ,, 5 X2: n 5 • • • 5 X,,,, be the order statistics
obtained by arranging the preceding random sample in increasing order of
magnitude. Then, the event x < X 5 x + 8x is essentially same as the

9
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following event: 

n — i  

— 00 x x +Sx 00

X, s x for i — 1 of the X, 's, x < X, s x + Sx for exactly one of the X,'s,
and X,. > x + Sx for the remaining n — i of the X,'s. By considering Sx to
be small, we may write

n!
P(x < X;  s x + 8x) _ (i — 1)!(n — 

i)I {F(x)}'
1 { 1 — F(x + Sx)} n- '

x{F(x + 3x) — F(x)} + O((Sx) 2), (2.2.1)

where O((Sx)2 ), a term of order (Sx)2, is the probability corresponding to
the event of having more than one X, in the interval (x, x + Sx]. From
(2.2.1), we may derive the density function of Xi: „ (1 < i s n) to be

( P(x < Xi „ <x + Sx) 1
fi : n(X) = lima o (1	 Sx

	J}

(i — 1)!(n — i)!
 (F(x)} i-1 {1 — F(x)} „-'f(x),

—0o < x < CO. (2.2.2)

The above expression of the pdf of X, : „ can also be derived directly from
the joint density function of all n order statistics. To show this we first of all
need to note that, given the realizations of the n order statistics to be
x 1in < x2 < • • • < X„ : „, the original variables X; are restrained to take on
the values x;: „ (i = 1, 2, ... , n), which by symmetry assigns equal probability
for each of the n! permutations of (1, 2, ... , n). Hence, we have the joint
density function of all n order statistics to be

n

11,2 	 n:n(xl,x2, ... ,X„)— n!llf(xr), —co <x t <x 2 < ••• <x„< op.
r^1

(2.2.3)

The above joint density function of all n order statistics may be derived
alternatively using the Jacobian method and a n!-to-1 transformation as
described in Hogg and Craig (1978); see also Chapter 1 for an argument
based on uniform order statistics. Thus, for example, in the case of standard
uniform distribution with density function f(u) = 1, 0 S u S 1, and standard
exponential distribution with density function f(x) = e - `, 0 5 x < co, we
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have the joint density function of all n order statistics to be

u 2 ,... , U„) = n!,	 0 < u 1 < u 2 < • • < u n < 1, (2.2.4)

and

f1,2, 	 n:n(X 1 ,X2,...,X„) =n!e - ^"^ x ',	 0 <X 1 <X 2 < ... <xn <00,

(2.2.5)

respectively. We will make use of the above joint density functions later in
Chapter 4 in order to establish some properties of uniform and exponential
order statistics. For example, from (2.2.4) we will show later in Section 4.7
that U : „/U, :n and U, : „ (1 < i < j < n) are independently distributed as
Beta(i, j — i) and Beta (j, n — j + 1), respectively. Similarly, from the joint
density function of exponential order statistics in (2.2.5) we will show later in
Section 4.6 that the set of exponential spacings X i  — Xi - 1  (with Xo = 0)
form a set of n independent exponential random variables.

Now, by considering the joint density function of \all n order statistics
in Eq. (2.2.3) and integrating out the variables (X 1 .,..., Xi _ 1.  „) and
(X,,,,„,..., X„,„), we derive the marginal density function of X, : „
(1 < i n) tobe

fi:n(x) — n!f(x){Ix 
... 

fx2f(xl) ... f(xi -1) ^1 ... Cjxi-1^
ao	 J o0

X i +2 ((	 ((x ^ ... f
	 flxi+I) • • • flxn) ^i +1 ... dx„}. (2.2.6)

X

Direct integration yields

X
r ^

X3

f w ...	 r 
^f(X1)f(x2) ... f(xi -1) ^1 ^2 ••• ^jx i - I

= {F(xJ2))`1
/(i — 1)!

and

(2.2.7)

I
°D 

•• rX2

+ 3

r
+2f( x

i+1)f( xi+2) • • • f( xn) dxi +l dri +2 • • drnx	 x

= {1 — F(X)) n,/(n — i)!. (2.2.8)

Substitution of the expressions (2.2.7) and (2.2.8) for the two sets of integrals
in Eq. (2.2.6) gives the pdf of X, n (1 < i < n) to be exactly the same
expression as derived in (2.2.2).
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The pdfs of the smallest and largest order statistics follow from (2.2.2)
(when i = 1 and i = n) to be

fl:n(x) = n{1 — F(x)} n i f(x),	 —00 <x < co, 	(2.2.9)

and

Jn:n(x) = n{F(x)} n-I f(x),	 —00 <x < oo,	 (2.2.10)

respectively.
The distribution functions of the smallest and largest order statistics are

easily derived, by integrating the pdfs in (2.2.9) and (2.2.10), to be

FI: "(x) = 1 — (1 — F(x)}",	 —00 < x <00,	 (2.2.11)

and

F„ : „(x) _ {F(x)}",	 —00<x < oo.	 (2.2.12)

In general, the cdf of X, : n may be obtained by integrating the pdf of X, : n in
(2.2.2). It may also be derived without much difficulty by realizing that

F,:n(x) = P(X1:n <x)

= P(at least i of X I , X2 ,..., Xn are at most x)

= E P( exactly r of X I ,  X2 , . . . , Xn are at most X)

r =i

= E (7)(F(x)}r{1 — F(x) }n — r,	 —oo < x < oo. (2.2.13)
r= t

Thus, we find that the cdf of X, : ,, (1 < i < n) is simply the tail probability
(starting from i) of a binomial distribution with F(x) as the probability of
success and n as the number of trials. We may note that Fj: ,,(x) in (2.2.13)
reduces to the expressions in (2.2.11) and (2.2.12) when i = 1 and i = n,
respectively. Furthermore, by using the identity that

E (r)p r (1 _ p) n—r = rp 	n I I(1
' — t)" '[1t,	 0<p<I

rs , 	 (i — 1)!(n — i)!

(2.2.14)

(which may be proved easily by repeated integration by parts), we can write

 



DISTRIBUTION OF AN ORDER STATISTIC
	

13

the cdf of Xe .,, from (2.2.13) equivalently as

n!
Fi:,t(x) = Jli	 (i - 1)!(n - i) !

=1ia ,. )(i,n -i +1),

I -1(1 - t) „	

dt,

-cc < x < oo,	 (2.2.15)

which is just Pearson's (1934) incomplete beta function. It should he pointed
out here that the expression of F1 . 11(x) in (2.2.15) holds for any arbitrary
population whether continuous or discrete. However, under the assumption

that the population is absolutely continuous, we may differentiate the expres-
sion for the cdf in (2.2.15) and derive the pdf of X i: ,, (1 < i < n) to be
exactly the same expression as given in (2.2.2).

It is important to mention here that one can write the cdf of X;: „ in terms
of negative binomial probabilities as noted by Pinsker, Kipnis, and
Grechanovsky (1986), instead of the binomial form given in (2.2.13). To see
this, let us write

Fi:,,(x ) = P( X,, < x)

= P (reaching i successes in the course of at most n trials with
probability of success F(x))

= 	i ){F(x)} { 1 - F(x) } 11 + I i 1 1 ) {F ( x )} {1 - F(x) } 1

+ 	+I
i —
n - 1 ){F(x)H 1 — F(x)}

I

-.- I 1 r) {F(x)} ^ { — F (x)}	 -x< x < x.

EXAMPLE 2.2.1. Let us consider the standard uniform distribution
with density function f(u) = 1. 0 < u < 1, and cdf F(u) = u, 0 < u < 1.
Then, from Eqs. (2.2.13) and (2.2.15), we immediately have the cdf of  U,.,,
(1 < i < n) to be

 n!„
F^ (u)= ^ (r)u'(1	

1
—u) ,^ ,= 	ti -1(1 - t) " - 'dt,,:,,	

u ( i - 1)!( n - i)!r=i

0 < u < I. (2.2.16)

From Eq. (2.2.2), we have the density function of U; „ (I < i < n) to he

n!

fi:,,(ii) = (i - 1)!(n -i)1ui
-1(1 - u ) , ^ ^.	 (1 <u < 1. (2.2.17)

„ - ,
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From the above density function, we obtain the mth moment of L. n to be

µ^mn = E(Ui n) = f I Umfi:n(U) dl!
0

= B(i + m,n - i + 1)/B(i,n - i + 1),

where B(•, • ) is the complete beta function defined by

B(p,q) = fo'tP -1 (1 - t) q- ' dt,	 p,q > 0,

which yields upon simplification

n!	 (i + m - 1)!
Nlmn - (n +m)! (i - 1)!

From Eq. (2.2.19) we obtain, in particular, that for i = 1, 2, ... , n

II i:n = E(Ui:n) = pi

and

(2.2.18)

(2.2.19)

(2.2.20)

= en = var(Ui: n) = 142;, — µ?: n = pi qi/(n + 2), (2.2.21)

where pi = i/(n + 1) and qi = 1 - pi . From the pdf
(2.2.17), we may also easily work out the mode of the
be at (i - 1)/(n - 1).

of Ui : n (1 5 i < n) in
distribution of U,. n to

EXAMPLE 2.2.2. Next let us consider the standard
 

power-function distri-
bution with density function f(x) = vx" - ', 0 < x < 1, v > 0, and cdf
F(x) = e, 0 < x < 1, v > 0. From Eqs. (2.2.13) and

 

(2.2.15), we then have
the cdf of Xi:n (1 < i 5 n) to be

EFi:n(X) = L ( r )(Xv)r(1 — X v)n -r

r=i

jx n!
= J ^ (i - 1)!(n - i)I t 1-1 (1 - t) n ` i dt, 0 < x <1, v >0.

(2.2.22)

From Eq. (2.2.2), we similarly have the density function of Xi,n (1 S i 5n)
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to be

n!
Ji:n(x) _ (i — 1)!(n — i)! vx i° - '(1 —x")" I, 	 0 <x < 1, v > 0

(2.2.23)

from which we obtain the mth moment of Xi:n (1 < i S n) to be

(m) // m	 % I m
= ElXi:n) = f x	 n( x)

0

=B(i+ v,n —i +1) B(i,n —i +1)

r(n + 1)	 r(i + m/v)_  	,	 (2.2.24)
	F(n + 1 + m/v)	 r(i)

where r(•) is the complete gamma function defined by

r(p) = I^e-`tP-I dt,	 p > 0.	 (2.2.25)

In particular, by setting m = 1 and m = 2 in Eq. (2.2.24), we obtain

and

r(n + 1)	 r(i + 1/v)
µ, :n — E(X") 

F(n + 1 + 1/v)	 r(i)
(2.2.26)

r(n + 1)	 r(i + 2/v)
en = E(X?n) — 	F(n + 1 + 2/v)	 r(i)	 ,	 (2.2.27)

from which we get

= var(Xi:n )
r(n + 1)	 r(i + 2/v)	 r(i + 1/v)

F(i)	 F(n + 1 + 2/v) 	F(n + 1 + 1/v)•„). (2.2.28)

Further, from the pdf of Xi  n in (2.2.23), we observe that the mode of the
distribution of Xi:n is at ((iv — 1)/(nv — 1)) I1 ". We may also note that the
results obtained in Example 2.2.1 for the uniform order statistics can all be
deduced from here by setting v = 1.
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2.3. JOINT DISTRIBUTION OF TWO ORDER STATISTICS

In order to derive the joint density function of two order statistics Xi : n and
Xi: ,, (1 < i < j < n), let us first visualize the event (x i < Xi :n < x i + Sx i ,
xj < XX . ,, << xj + Sx) as follows: 

i - 1
]	 ] 	

x ; 	x ; + Sx ;

j — i -1
]	 ] 	

xj 	xj + Sxj

n— j    

— x   

X, < x, for i— 1 of the X,'s, x , < X, < x, + Sx i for exactly one of the X,'s,
x i + Sx i < X, < xj for j — i — 1 of the X,'s, x j < X, < x, + Sx j for exactly
one of the X,'s, and X, > xj + Sxj for the remaining n — j of the Xr 's. By
considering Sx i and Sxj to be both small, we may write

1'(x, < X, : ,„ < X i + Sx, , xj < Xj : n < x j
 + (Sxj)

n! 	 i

(i — 1)!(j — i — 1
)!(n —j)! {F(xi)}

x{F(xj ) — F(x i + Sx i )}' 	 ( {l — F(xj + 5xj )) J7

x{F(x i + Sx i ) — F(x i )}{F(xj + Sxj ) — F(x) ))

+ O((5x i ) 2 5xj ) + 0(5x i (5xj ) 2);	 (2.3.1)

here O((6x,) 28x 1 ) and O(3x,(Sxj )2 ) are higher-order terms which corre-
spond to the probabilities of the event of having more than one X, in the
interval (x i , x i + Sx j ] and at least one X, in the interval (x i , x i + Sx j ], and
of the event of having one X, in (x i , x, + Sx,] and more than one X, in
(xj , xj + Sxj ], respectively. From (2.3.1), we may then derive the joint density
function of Xi : n and Xj : n (1 < i < j < n) to be

fi,j:n( x i+ xj)

P(x i < Xi : „ < X i + Sx i , x  < Xj: „ x  + Sxj ) 1
=	 lim

fix ; -^0. Sxi +0	 SXiSXj

n!

(i — 1)!(j — i — 1)!(n — 1)!

x {F(x i))' 
I
{F(xj ) — F(x i ))'	

I
{1 — F(xj )}" 'f(x i )f(xj ),

— x < x i <x i < oc. (2.3.2)
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The joint density function of X i: „ and X;: „ (1 < i < j � n) given in
(2.3.2) can also be derived directly from the joint density function of all n
order statistics as follows. By considering the joint density function of all n
order statistics in Eq. (2.2.3) and then integrating out the variables

(X1:n , ... , X;-I :n ) , (Xi+I+••• , X' 1;n), and (X14. 1: „,..., X ), we derive
the joint density function of X,.,, and Xi: ,, (1 < i < j < n) to be

fi.):n(xi, X )= n!f(x;)f(x ; )( f x, ... f x f(x i)
- x

.. f(xi-I)dxt	 C^xi-1}

Y
X r

Yi	
f ,', f(xi +1) ... f(xi - 1) dxi+1 ... dxi 1}

1,

X 1J`
rfx .. • fxi+,

f(x; +t ) ... f(x„) clx; +t ... dxn}.	 (2.3.3)
x,

By direct integration we obtain

fx, .. fx , fx fcxt)f(x2) • • • f(x;-1 ) ^1 ^2 .. • ^;-1
x

.	
x x

= {F(x i )}11 /(i - 1)!,	 (2.3.4)

/a,

. • • 
rx +s fx .

J	 J	 f( x;+t)f(xi+2) • • • f(x;-1) dr;+1 dvi+2 • • dx;-1
x ; 	x,	 x ,

= {F(x; ) - F(x i )}i	
1 /( j - i - 1)!,	 (2.3.5)

I

and

L: ic 3 ::l* 2f(xi±I)f(xi+2) ...f(x„) d1dx;+ 2

={1-F( ) }n (2.3.6)

Upon substituting the expressions (2.3.4)-(2.3.6) for the three sets of inte-
grals in Eq. (2.3.3), we obtain the joint density function of X i: ,, and X;: ,,
(1 < i < j < n) to be exactly the same expression as derived in (2.3.2).

In particular, by setting i = 1 and j = n in (2.3.2), we obtain the joint
density function of the smallest and largest order statistics to be

f1.n:n( XI, x„) = n(n - 1) {F(xn ) - F(x1) }n
 2f(x1)f(xn)+

-oc < x 1 <x„ < oo; (2.3.7)
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similarly, by setting j = i + 1 in (2.3.2), we obtain the joint density function
of two contiguous order statistics, X; :„ and X;+ 1 :„ (1 s i s n - 1), to be

n!
fi,i+l:nlxi+ xi+l) — (i - 1)!(n - i - 1)!

x {F(xi )}` -1{1 -F{X1}}
n-i —' 

f(xi)f(xi+l),

03 < x; < xi+I < CO. (2.3.8)

The joint cumulative distribution function of Xi: „ and Xj: „ can, in
principle, be obtained through double integration of the joint density func-
tion of Xi: „ and Xj: „ in (2.3.2). It may also be written as

Fr,j:n( x i , xj) = F:n(xJ)

and for x i < xi ,

xj) = P(Xi:n sxir Xj:n sxj)

for x i z xi ,

= P (at least i of X1 , X2 , ... , X„ are at most x i and at least
j of X 1 , X2 , ... , X„ are at most x1 )

n s
= E E P(exactly r of X1 , X2 , ... , X„ are at most x i and

s'"j r=i exactly s of X1 , X2 ,..., X„ are at most xj)

• s	 n!

= £	 r!(s — r)!(n — s)!
s r

x(F(x i)) {F(xj ) — F(x ;)} {1 — F(xj)}
ns

 .	 (2.3.9)

Thus, we find that the joint cdf of Xi „ and Xj : „ (1 5 i < j 5 n) is the tail
probability [over the rectangular region (j, i), (j, i + 1), ... , (n, n)j of a bivari-
ate binomial distribution. By using the identity that

E 	r!(s — r)!(n —s)! Pl(P2 — P1)s-r ( 1 — P2)
11-3'

n s 	 n!

_ jP^ Pz	 n!

— Jo ' l
, (1— 1)!( j — i — 1)!(n — j)!

xt1 -1 (t 2 - t l ) j
-i -l(1 - t2 ) n _j dt2 dt 1 ,	 0 <p l <p2 < 1,\	

(2.3.10)

 



u;-I(uj — u i )' - i-I (1 — uj )n-j
,

(i — 1)!( j — i — 1)!(n — j)!fi.J:nl U i , Uj)

n!
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we can write the joint cdf of Xi : n and j : n in (2.3.9), equivalently, as

/
	 =

F(x i) F(xi ) 	n!
Fi,j:nlxi , xj) = j	 jo	 r,	 ( i — 1 ) ! ( j — i — 1 ) ! ( n — j ) !

Xtr t ( t 2 — tl) j-i-I (1
 — t Z) n-j dt 2 dt l ,

—00 <x i <xj < oo, (2.3.11)

which may be noted to be an incomplete bivariate beta function. The
expression of Fi j:n(x i , xj) in (2.3.11) holds for any arbitrary population
whether continuous or discrete. But, when the population is absolutely
continuous, the joint density function of X1:n and Xj .,, (1 < i < j < n) in
(2.3.2) may be derived from (2.3.11) by differentiating with respect to both x i

and x j .

EXAMPLE 2.3.1. As in Example 2.2.1, let us consider the standard uni-
form population. In this case, from Eqs. (2.3.9) and (2.3.11) we have the joint
cdf ofUi:n and U(1< i < j5 n) tobe

n s
^-+

Fi,j:n(Ui , uj) = E E 	 Ui(Uj - U i)
s- r

 (1 — uj)
n-s

S_j r=i r!(s — r)!(n — s )!

( 	
I

- 
r

Jo

u ; fu;

 (i - 1)!( j - 
n!

 1)!(n — j)!

xtr I (t 2 — t l ) j-i-I (1 — 1 2 ) n-1 dt 2 dt l ,	 0 < u i < u i < 1.

(2.3.12)

Similarly, from Eq. (2.3.2) we have the joint density function of Ui :n and Uj:n

(1 <i <j < n) tobe

n!

0<u i < u 1 < 1. (2.3.13)

From the above joint density function, we obtain the (m 1 , mj )th product
moment of (Ui:n , U :n ) to be

u
µ( m i ,mi) = E (UmiUmj ) = J I J lU mi U ^^f	 (u u^) du. dU•

i,j :n	 +:n j:n	 +	 j	 i,j:n	 +,	 1	 +	 j
0 0

n!

(i — 1)!( j — i — 1)!(n —j)!

XB(i + m i , j — i)B( j + m i + m, n — j + 1),
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which upon simplification yields

n!	 (i +
i)  

	mi – 1)! (1 + m i + m j – 1)!
 {2 3.14)(mi.m =

(n +m i +mj )!	 (i – 1)!	 (j + m i – 1)!

In particular, by setting m i = m j = 1 in Eq. (2.3.14), we obtain

(	 +1)
= E(U:nUi:n) — (n + 1)(n + 2) '

1 < i<j5 n, (2.3.15)

which, when used with the expression of 	 in (2.2.20), gives

COV(Ui:ny Uj:n) = ^'r'i.l:n	 E'I'i:n E''j:n — pigj/(n + 2), (2.3.16)

where, as before, pi = i/(n + 1) and qj = 1 – pj .

EXAMPLE 2.3.2. Let us take the standard power-function distribution
considered already in Example 2.2.2. In this case, from Eqs. (2.3.9) and
(2.3.11) we have the joint cdf of Xi .,, and X1: ,, (1 < i < j < n) to be

n!
((   r°(X^Fi.j:nlxi° xj) = ^	 X

r!(s – r)!(n – s)! ` \ J
s=j r =i

(r.7 n !

0 JIr, (i – 1)!( j – i – 1)!(n – j)!

xt; -I (t Z – t I )' ' 1 (1 — t2) "—' dt 2 dt l ,

0 < x i < x j <1, v > 0. (2.3.17)

From Eq. (2.3.2), we can similarly get the joint density function of X i: ,, and
Xj ;n (1 < i < j < n). From that expression we immediately obtain

{'
( r" mi' = E(Xm mi ) = J ' J rXm;xmiJ

	 ( x' x') dX dx•
h'i. l :n	 r:nX l:n 	/	 il :n	 r' 1	 r

0 0

n!

(i – 1)!( j – i – 1)!(n – j)!

rn i /	 m i + m
xB(i + —,j  – i)1BI j + 	 v 	,n – j + 1). (2.3.18)

n	 s
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This, upon simplification, yields

(in, In,)

'. "	 r[n + I + (m , + m,)/v1	 1'(i)	 f ( j + m ; /v)

1 <i <j <n. (2.3.19)

In particular, by setting m ; = m ; = 1 in Eq. (2.3.19), we obtain

= E( X
1'( n + 1)	 1'( i + 1/v)  r ( j + 2/0

X
" ' " 	 1'(n + 1 + 2/v)	 I'(i)	 r ( j + 1/v)

1 < i <j < n. (2.3.20)

When used with the expression of µ,:,, in (2.2.26), this gives

= coy( x,,„, Xi:n)

r(n + 1) r(j + 2/0	 r(i + I/v)	 r(i + 1/u)

no {FL! + 1 /0 r(n + 1 + 2/v) 	F(n + 1 + 1/v) 11' ,,}'

I <i<j<n, v> 0. (2.3.21)

2.4. SOME PROPERTIES OF ORDER STATISTICS

Let U 1 , U2 , ... , U be a random sample from the standard uniform distribu-
tion and X I , X2 , ... , X„ be a random sample from a population with cdf
F(x). Further, let U I ,, < U2: ,, < • •• < U„,„ and X I , < X2 „ < <
X„ : ,, be the order statistics obtained from these samples.

Specifically, when F(x) is continuous the probability integral transforma-
tion U = F(X) produces a standard uniform distribution. Thus, when F(x) is
continuous we have

F( X;:,,) 	 i = 1,2,..., n.	 (2.4.1)

Further, with the inverse cumulative distribution function F - '(•) as de-
fined in (1.1.2), it is easy to verify that

,►
F -I (U; ) = X; ,	 i = 1,2, ... , n

1- ( n+1)	 1'(i + mi/v) r(j+(m ; +m ; )/vj

for an arbitrary F(-). Since F() is also order preserving, it immediately
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follows that

F-1(U:n) 
e
 Xi:n,	 i = 1,2,...,n.	 (2.4.2)

The distributional relations in (2.4.1) and (2.4.2) were originally observed by
Scheffe and Tukey (1945). The relation in (2.4.2) could have been used along
with the expression of the cdf of u;: „  in (2.2.16) in order to derive the cdf
and the density function of Xi: „ (1 5 i 5 n) to be exactly as given in Eqs.
(2.2.15) and (2.2.2), respectively. The single and the product moments of
order statistics Xe : „ can be obtained from Eqs. (2.2.2) and (2.3.2) as

n!	 rm	 f
µ

o
m"-	 (i — 1)!(n — i)! J X m (F(X)) i -1 1 1 — F•(x)}nif(x) ^,

1 <i <n, m = 1,2,...,

and

n!(m;, mi) _ 	
µ 	(i — 1)!( j — i — 1)!(n — j)!

x If
—e. <x; <x, <ce

in'XjnilF(Xf))'-1{F(Xi) — F(x i)r i
-1

x{1 —F(xj )}„-'f(x i )f(xj)dx i dzj, 1 Si <j 5n,m i ,mi Z 1.

Alternatively, by using (2.4.2) they may also be written more compactly as

i

(m) — (i — 1)!(n — i)! fo {F-

1(u) }mui -1(1 — u )n -i du ,N^i:n 

1<i<n, m ^ 1,

and

F 1 i.i:n	 (i — 1)!(j — i — 1)!(n —	
l	 I

(mi 
m') 	n.	 ff 	{F-1(ui)i„`i{F-1(u^)}m,

I )! 0<14 ; <ui <1

x14-1(ui — u i )j -i -1 (1 — ui )n -i dui dui ,

1 5 i< j< n, mom; z 1.

The distributional relation in (2.4.2) will also be utilized later on in Section

 



SOME PROPERTIES OF ORDER STATISTICS
	

23

5.5 in order to develop some series approximations for the moments of order
statistics Xi: „ in terms of moments of the uniform order statistics U :n .

In the following two theorems, we relate the conditional distribution of
order statistics (conditioned on another order statistic) to the distribution
of order statistics from a population whose distribution is a truncated form of
the original population distribution function F(x).

Theorem 2.4.1. Let X I , X2 , ... , X„ be a random sample from an abso-
lutely continuous population with cdf F(x) and density function f(x), and let
X1: „ < X2: ,, < • • < X„ : „ denote the order statistics obtained from this
sample. Then the conditional distribution of Xj :„, given that Xi ,„ = x ; for
i < j, is the same as the distribution of the (j — i)th order statistic obtained
from a sample of size n — i from a population whose distribution is simply
F(x) truncated on the left at x ; .

Proof. From the marginal density function of Xi : „ in (2.2.2) and the joint
density function of Xi: „ and Xj: „ (1 —< i < j < n) in (2.3.2), we have the
conditional density function of Xj: „, given that X; : „ = x ; , as

Jj:n(xjlXi:n — xi) — Ji.j:nlxi , xj)/fi:n(xi)

(n — i)!	 F(xj) — F(x i )l ) 	I

(j —i- 1)!(n —j)! l 	1 —F(x;)

x
( 1 — F(xj) n 	f(xj )
{I 1 — F(x ; ) }	 1 — F(x i ) '

i <j � n, x ; < x j < oo. (2.4.3)

The result follows from (2.4.3) by realizing that (F(xj) — F(x i )}/(1 — F(x 1 ))
and f(xj)/{1 — F(x ; )} are the cdf and density function of the population
whose distribution is obtained by truncating the distribution F(x) on the left
at x ;. ❑

Theorem 2.4.2. Let X 1 , X2 , ... , X„ be a random sample from an abso-
lutely continuous population with cdf F(x) and density function f(x), and let
Xt „ < X2: n < • • • < X denote the order statistics obtained from this
sample. Then the conditional distribution of X, : „, given that Xj: „ = xj for
j > i, is same as the distribution of the ith order statistic in a sample of size
j — 1 from a population whose distribution is simply F(x) truncated on the
right at x j.
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Proof From the marginal density function of Xi: ,, in (2.2.2) and the joint
density function of Xe: ,, and Xj:n (1 < i < j < n) in (2.3.2), we have the
conditional density function of Xi: ,,, given that X1: ,, = xj , as

fi:n( x ilXj:n — xj) — fi.j:n(xi+xj)/fj:n(xj)

_	 (j — 1)! 	F(xi)
 i I

(i — 1)!(j — i — 1)! F(x j )

F(xj) — F(xi) J t I 
f(xi) 

	

F(xj )	 F(xj)'

1 < i < j, —oo < x i < xj. (2.4.4)

The proof is completed by noting that F(x,)/F(xj ) and f(x,)/F(xj ) are the
cdf and the density function of the population whose distribution is obtained
by truncating the distribution F(x) on the right at xj. ❑

By using an argument similar to the one applied in Theorems 2.4.1 and
2.4.2, we establish in the following theorem that the sequence of order
statistics from an absolutely continuous population constitute a Markov
chain.

Theorem 2.4.3. Let (X,)i be a sequence of independent random variables
from an absolutely continuous population with cdf F(x) and density function
f(x), and (Xi: ,,), be the corresponding sequence of order statistics. Then this
sequence of order statistics forms a Markov chain.

Proof In order to prove this result, we first obtain from (2.2.3) the joint
density function of X1

: n, X2 .,,,...,	 to be

f1,2	 i• n(xl, x2,..., xi)

= n!f(xl)f(x2) ... f(xi)

x /• ... lxr +z 
fx;zf(xi+l )f(xi +2) • .. f(xn) dxi +l dx

JI x;	 J+x;
2 ... dxnl

n!_ 
(n _ 

`)l (1	 F(xi))"' f(x1)f(x2) ... f(x,),

—00<x l < x 2 < ••• <x i < Do, (2.4.5)

and similarly the joint density function of X I :n , X2 :i ,..., Xi:n , Xj:,,
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(1 <i <j <n) tobe

f1.2	 ;  j:n (X I ,x 2 ,..., x i , xj)

= n!f(xl)f(x2) ... f(x i )f(x i )

x(x)
	 r;, ^ f x, + _	 1l(	 f(x;+1)f(x; + 2 ) ... f(xj 1)dx

; +I dx;+ 2 ... dxj-11
X,	 x,

X 
+1 ^

.

x r ... r i	 r '+'f(xj+1)f(xj +2) ... f(xn) dx j +1 dj +2 ... d-yn
x; 	xi	 x ;

n!
	(F(xj) — F(x i ) )' 	1 (1 — F(x)) n
( j — i — 1)!(n — j)!

xf(x1)f(x2) ••• f(x;)f(xj), 	 —co <X I <x 2 < ••• <X; < xj < x.

(2.4.6)

From Eqs. (2.4.5) and (2.4.6), we obtain the conditional density function of
Xi: „, given that X 1: ,, = x 1 , X2.,, = x 2 ,..., X, ,, = x ; , to be

fj:rt( XJIX I: n =x1 , ... , Xi:n — x;)

	j:n (x 1 ,x 2 ,..., xi, xj)/f1.2 	 ' n ( x l , x 2 , ... , x i )

(n — i)!

(j — i — 1)!(n — j)!

x {F(x,) — F(x,) 
1 — F( x ; )	 }

1 — F(xi) n ^	 f(xi)
1 — F(x ; ) 	 1 — F(xi)

— x <x 1 <x, < •• < x i <xj < x.

The proof is completed simply by noting that this is exactly the same as the
conditional density function of X;: ,,, given that X, ,, = x,, derived in Eq.
(2.4.3). ❑

The results presented in Theorems 2.4.1 and 2.4.2 can also be generalized
to relate the conditional distribution of order statistics (conditioned on two
order statistics) to the distribution of order statistics from a population whose

distribution is a doubly truncated form of the original population distribution
function. This result is presented in the following theorem.

Theorem 2.4.4. Let X I , X,, ... , X„ he a random sample from an abso-
lutely continuous population with cdf F(x) and density function f(x), and let
X I: n < X2 : „ < • • • X„,,, denote the order statistics obtained from this
sample. Then the conditional distribution of Xi ,„, given that Xi: „ = x ; and

=f1.2
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Xk : „ = xk for i < j < k, is the same as the distribution of the (j — i)th order
statistic in a sample of size k — i — 1 from a population whose distribution
function is F(x) truncated on the left at x i and on the right at xk .

Proof. By adopting a method similar to the one used in deriving the joint
density function of two order statistics in (23.2), we can show that the joint
density function of X1 ., Xj : „, and Xk :n (1 5 i < j < k 5 n) is given by

fi,j, k : n( x i+ xj' xk )

n!

(i — 1)!(j — i — 1)!(k — j — 1)!(n — k)!

X {F(xi))`1{F(xj) —
 F(xi) ), -' - 1

X {F(xk) — 
F(xj))k -j-' {1

 — F(xk))„kf(xi)f(xj)f(xk),t	
—co <x i <xi <xk < co. (2.4.7)

From Eqs. (2.3.2) and (2.4.7), we obtain the conditional density function of
Xj: „, given that Xi: „ = x i and Xk : „ = Xk, to be

fj:n(xjlXi:n = Xi, Xk :n = Xk)

i

F(xk) — F(xl) k
—j — I	 f(x1)

X F ( xk) — F(x i ) )	 F(xk) — F(xi)'

x i < xj < xk . (2.4.8)

The result follows immediately from (2.4.8) upon noting that (F(xj ) —
F(x i))/(F(xk ) — F(x i)) and f(xj)/(F(xk ) — F(x i)} are the cdf and density
function of the population whose distribution is obtained by truncating the
distribution F(x) on the left at x i and on the right at xk. 0

In addition to all these results, order statistics possess some more interest-
ing distributional properties if the population distribution is symmetric, say
about 0. In this case, by using the facts that f(—x) = f(x) and F(—x) =
1 — F(x), we observe from Eq. (2.2.2) that

— fi,l.k:n( x i+ xj , xk)/fi,k:n( xil xk)

(k — i — 1 )!	 F(xj) — F(x i ) ' - ` - ^

(j — — 1)!(k — j— 1)! {F(xk ) — F(x i)

Xi:n 
	

—Xn— i +I:n, (2.4.9)
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similarly, from the joint density function of Xi: n and Xj : n in (2.3.2) we
observe that

(Xi:n , Xj:n) 	 (—Xn—j +1:n+ —Xn— i+1:nJ• (2.4.10)

These two results help reduce the amount of computation to be performed
for the evaluation of moments of order statistics in the case of a symmetric
population. For example, from (2.4.9) and (2.4.10) we have

Ilimn = ( -1 )
m
 /-i,(n —)) i +l: n

and

(mr.mi)	 1 m;+mi (m ; )
t"1'i,j:n

	 =
— (_ )	 N n

mi,
 1+I,n— i +I:n

In particular, we obtain from these results that

µi:n =

cri,i:n

and

Qij 	 ' ^n—%+l,n— i +I:n•

(2.4.11)

(2.4.12)

(2.4.13)

(2.4.14)

(2.4.15)

(2.4.16)

2.5. DISTRIBUTION OF THE MEDIAN, RANGE,
AND SOME OTHER STATISTICS

Consider the sample size n to be odd. Then, from Eq. (2.2.2) we have the pdf
of the sample median in = X(n +1)/2:n to be

f4(x) =
([(n

nl
1) /21 !)2 (F(x)(1 — F(x))

}(n
-1)j2f(x),

— 

—<x<. (2.5.1)

From the pdf of the sample median in (2.5.1), we see at once that it is
symmetric about 0 if the population distribution is symmetric about 0. We
can work out the moments of the sample median Xn from (2.5.1). For
example, in the case of the standard uniform population, the pdf of the
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sample median given in (2.5.1) becomes

UI ( u) = n!{'	 u(n- 1)/2(1 — u)(n -1)/2
J l	

{[(n — 1)/2] 0 2

from which the mth moment of On is obtained as

n!	 [(n — 1)/2 + m] ! 

E(Ü"n) 	 (n + m)!	 ((n — 1)/2)!

0< u< 1, (2.5.2)

m = 1, 2, .. . . (2.5.3)

In particular, we have the mean and variance of Ü" to be

E(Ü)
" 

= 1 and var(Ü) = 	 1
2	 4(n+2)•

Similarly, in the case of the standard power-function distribution, the pdf
of the sample median in (2.5.1) becomes

fX„( x) =
n!

vx°1(n +1)/21- 1(1 —
(n-0/2

([(n — 1)/21!} 2

0< x< 1, v>0, (2.5.4)

from which the mth moment of X„ is obtained as

F(n + 1)	 F[(n + 1)/2 + m/v]
E(X;,") = 	F(n + 1 + m/v)	 F[(n + 1)/2]	 •

(2.5.5)

Suppose the sample size n is even. Then, as defined in the Notations and
Abbreviations list, the sample median is given by X„ = (X( „ / ,): ,, +

X(n/ ,4+1:n )/2. In order to derive the distribution of X„ in this case, we first
have from (2.3.2) the joint density function of X ( „ /2): ,, and 4,/2j+1:n to be

n!
fn/2,n/2 +I:n(xl,x2)	 ((n/2 — 1)1) 2

X{F(x1)}
n/2-I { 1 — F(x2) }n/2 

I f(xl)f( x 2) ,

—CO <xI < x2 <a. (2.5.6)
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From (2.5.6), we obtain the joint density function of X„ / 2 : „ and X„ to be

2n!
fX„ .:,,• X„( x 1' x) 	{(n/2 — ) } 2n ^	 1 I

x F x "^2 1 1 — F(2x — x 
^^/2 I{ x	 x — x{( 1)}	 {	 (	 1)}	 f( I)f( 2 	1),

—oc <x 1 < x < 00. (2.5.7)

By integrating out x 1 in (2.5.7) we derive the pdf of the sample median X„ as

2n!
fX„( x ) 	^

{(n /2 — 1)I }`

x i 	x 77/2 - 1 1— F2x — x "	 x^2 I (	 x

	

jF{ ( 1)}	 {	 (	 1)}	 f\ 1)f( 2 x — 1dx)	 1 ,

— z < x < ao. (2.5.8)

The integration to be performed in Eq. (2.5.8) does not assume a manageable
form in most cases. Yet the cdf of the sample median X„ can be written in a
simpler form from (2.5.8) as

FX„( xo) = P t X < x11)

— 	2n! Z fa„ fa 
(F( x i ))" /2-1 11 — F(2x —x1)},^^2 -1

{(n/2 — 1)^} -_ - x

xf(x 1 )f(2x —x 1 ) dx 1 dx,	 —0c <x, l < oo.	 (2.5.9)

By employing Fubini's theorem and changing the order of integration, we
derive the cdf of X„ as

1

FX„( xo) _ {(n/2
n. 1)I}

Zf-,

^{F(x1)} „/2 1 f(x1)

x

 L
 raI 1 — F(2x — x1 ) }n/

2
 f(2x — x 1 ) dx1 dx 1

X.

n!

 l l n 2 1(n/2	 )•( / )• [L
tF h t/2 1 — F(x1)}^,^2 f(x1) dx1

— 

— f 
X

{F( r1)}
„/2 -1 {1 — F(2x 11 — x1)}„/2f(xl) & 1 I. (2.5.10)
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In deriving (2.5.10) we have assumed that the population distribution has an
infinite support. When the population distribution has a finite support, we
may still use the expression in (2.5.10), but after fixing the limits of integra-
tion carefully. We shall illustrate this by considering the standard uniform
population. In this case, as 1 - F(2xo - x,) = 0 whenever x 1 5 2x 0 - 1, we
obtain the cdf of in from (2.5.10) to be, when 0 5 xo 5

n!

FX^(x0) 	(n/2 - 1)!(n/2)!

X 
l f

0 °x7 /2-1(1 - x02 dx, - fo x; /2-,(1 + x, - 2xo )" /2 ^1]

n n	 n !	 "/2	 n/ (	 _ 	 2 
= Ix

°l 2' 2 + 1 )	 (n/2 - 1)!(n/2)! i^ (

—oil

 t i 
(1 - x o )

x
fx°x;/z-1(x0 —x,>'dx,

0
n/2

= ix°( 2 2 + 1 ) — F' (- 1 ) i (n/2 — 1 )xö/2 +i(1 — x0)"/2- 'f
i=0	 l

05x0 52, (2.5.11)

and when 2 5 x 0 < 1

n!
Fx(xo) - (n/2 - 1)!( n/2)!

X ^ fXxi /2 -1(1 — x1) "12 ^ 1 - jx0 x i /2- ^ (1 + x i — 2xo)"/2 ^i^Jo	 J2x° -1
n n	 n!

	= !x°(2, 2 + 1 )	 (n/2 - 1 )!(n/2)!
n/2-1

X E (n/2

1

 - 1 )(2x 0 - 1)n/2 -1 -i(1 - xo)n/2 +i +1

i =0

X j ' t n /2 +i dt
0

°( 2 2
n n 1+ ) _ "/2- 1(n/2 +i

)(n/21_i)
 

l̂a()

X 2x	 1 "/2 -1
-, 

1— x n/2+i + 1 ' 	 1
	( o — )	 (	 o)	 2 < x0 <- 1. (2.5.12)

In the foregoing formulas, /x0(n/2, n/2 + 1) denotes an incomplete beta
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function as used in Eq. (2.2.15). In particular, when x o = f, we obtain from
Eqs. (2.5.11) and (2.5.12) that

FX"(2) =I 1
/2 ( 2'2 

+1)-2-"
( n2 11). (2.5.13)

Next, we shall describe the derivation of the distribution of the sample
range W" = X : " - X I: ". From the joint density function of X1 : " and X" : n
in (2.3.7), we have the joint density function of X I  W" as

fx,:,,.w"(xl,w) = n(n - 1){F(x 1 + w) - F(x1)}"-2
f(x1)f(x1 + w),

— co < x < co, 0 < w < oo. (2.5.14)

By integrating out x 1 in (2.5.14) we derive the pdf of the sample range W" as

fw„(w) = n(n - 1) .1. {F(x l + w) - F(xl)}n2 f(xl)f(x1 + w) dx1,

0<w<co. (2.5.15)

Even though the integration to be carried out in (2.5.15) does not assume a
manageable form in many cases, the cdf of W” does take on a simpler form
and may be derived as

Fw( ►t'o)=P(W" Swo)

= n(n 1) f 
Wa

 f  {F(x, + w) - F(x l ))" -2f(x
l )f(x l + w) dx l dw

o - co

= n f : f(x 1 ){(n - 1) 
fowo

{F(x l + w) - F(x)}" -2f(x l + w) dwl dx 1

= n f  {F(x 1 + wo ) - F(x 1 )}" -1 f(x 1 ) dx l ,	 0 < wo < 00. (2.5.16)

It should be mentioned here that the expressions of the density function and
cdf of W" derived in (2.5.15) and (2.5.16) are for the case when the
population distribution has an infinite support, and may still be used for
the case when the population distribution has a finite support by changing
the limits of integration appropriately. For example, for the standard uniform
distribution, since f(x 1 + w) = 0 when x 1 + w > 1, we obtain from Eq.
(2.5.15) the pdf of the sample range W" as

fwn(w) = n(n - 1) I 1-Ww n-2 dx 1
a

= n(n - 1)wn -2(1 - w),	 0 < w < 1.	 (2.5.17)
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From Eq. (2.5.17), we obtain the cdf of the sample range Wn as

wo
Fµ,,,(wo ) = f n(n — 1) ,^ iw	 (1 — w) dw

0

nw!	 —(n-1)w,,,	 0<w 11 <1.	 (2.5.18)

Also, by realizing that F(x 1 + w 11 ) = 1 when x l > 1 — w (I , we obtain the cdf
of W„ from Eq. (2.5.16) as

Fw,^( wu )= f I —

 wnwii - I dx I + n f I (1 — x I ) ,^ I dz
( ►

	f
 - w„

n	 I= nw (I (1 — w11) + wo ,
0< W0 < 1,

which is exactly the same as the expression derived in (2.5.18). It is of interest
to note from (2.5.17) and (2.5.18) that the sample range W„ from a standard
uniform population has a Beta(n — 1, 2) distribution.

The results for the sample range discussed above can be generalized to the
spacing Wi 	 = Xj:n — Xi .,,, 1 < i < j < n. It may be noted that the ith
quasirange W, : „  = Xn -i + I : n — X, ; n is a special case of W j „,  and hence a
spacing is sometimes called a generalized quasirange. In order to derive the
distribution of W, n , we first obtain the joint density function of Xi: „ and

from Eq. (2.3.2) to be

n!
fx:. .. . w::..(x i , w) _   

(i — 1)!(j— i — 1)!(n —j)!

x {F(x i)}' I V( x i + w) — F(.0}'
 -I

X{1 — F(x i + w) }n/ f(xi)f(xi + w),

—oo < x i < co, 0 < w < 00. (2.5.19)

By integrating out x, from (2.5.19), we derive the pdf of W.:n as

n!
fwr.i : „(K') _ (i - 1)!( j — i - 1)!(n

X f a 
{ F(xi)}^ I{F(xi + w) — F(x i )}' - ^ - I

,^

x{1 — F(x i + w) }"'f(x i )f(x i + w) dx i ,

0<w<00. (2.5.20)
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For the standard uniform distribution, for example, we obtain the pdf of
W .i:,, from (2.5.20) to be

n!
fWri :

„(w) = 
(i — 1)!( j — i — 1)!(n — j)!

X f 1—w	 n -II(1 —w —x ; )	 dx ;

a

= 	n!

( j — i — 1)!(n — j + i)!
0<w<1.

(2.5.21)

We thus observe that W; ;:,, has a Beta( j — i , n — j + i + 1) distribution
which depends only on j — i and not on i and j individually. Further, we
note from Eq. (2.5.21) that for the standard uniform distribution the spacing
1,1/1 , ) ,,, is distributed exactly same as the (j — i)th order statistic in a sample
of size n from the standard uniform distribution. Many more interesting
distributional properties of this nature for order statistics from uniform and
some other populations are discussed in Chapter 4.

Next we shall present the derivation of the distribution of the sample
midrange V„ = (X I: „ +X„ : „)/2. From the joint density function of X I: ,,
and X„ : „ in (2.3.7), we have the joint density function of X, : „ and V„ as

fx:,,.v„(xl,t ) = 2n(n — 1){F(21' —x,) — F(x,)}” 2f(xl)f(21' —x,),

—x <x l <1. < x. (2.5.22)

By integrating out x, in (2.5.22) we derive the pdf of the sample midrange V„
as

fv„(”) = 2n(n — 1) f ' {F(2i' —x l ) — F(x,)}” 2f(xl)f(2i' —x 1 ) dr,
x

—x < I < x. (2.5.23)

For example, for the standard uniform population, we obtain from Eq.
(2.5.23) the pdf of V„ to be, when 0 <

' 	 -

= 2n(n — 1) f (2r — 2x,) /1

 2 dxl
I

= 2" - nu" -
 I 	0 < I• < (2.5.24)
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and when 2 5 v < 1,

fvn(v) = 2n(n - 1) J(2v - 2x 1 )" -2
 dX1

2" —I

= 2" - 'n(1 - v) n -1 ,	 Z S v 5 1.	 (2.5.25)

From Eqs. (2.5.24) and (2.5.25), we derive the cdf of the sample midrange V"
for the standard uniform distribution as

Fv.(vo ) = P(Vn 5 vo ) =	 vg, 	 if05uo5 2

= 1 - 2n -1 (1 - v), 	 if 2 5 vo 5 1.	 (2.5.26)

From Eq. (2.5.23), on the other hand, we may write in general the
distribution function of the sample midrange Vn as

Fv.(uo) = 2n(n - 1)f
 U„f

 ll.(F(2v - x l ) - F(x 1 )}n -2 f(x 1 )f(2v - x 1 ) dz 1 du

= n f U° f(x 1 42(n - 1)fX °
(F(2v - x 1 ) - F(x 1 )}n -2f(2v - x 1 ) dv1 dx 1

-

= n f
 va

 (F(2uo - x 1 ) - F(x1))e-1 f(xl) dx1+ 	 -^ <vo < co.

(2.5.27)

For the standard uniform population, the cdf of the sample midrange V"
obtained from (2.5.27) is identical to the one derived in Eq. (2.5.26).

Similar formulas can be derived for the density function and the dis-
tribution function of the general quasimidrange V .; : n = (X i,n + Xi : n )/2,
1 < i < j 5 n, which of course will include the ith quasimidrange Vi „  =
(Xi : n + Xn _; + 1 : n )/2 as a special case.

EXERCISES

1. Let X1, X2, and X3 be i.i.d. Exp(0) random variables with pdf

1
f(x) = 9 e -X ^ B, xz 0 , 8 > 0.

(a) Determine the distribution of X1:3.
(b) Determine the distribution of X3 3.

(c) Determine the distribution of the range X3:3 — X1:3 .
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2. Let X1 and X2 be i.i.d. Pareto (v) random variables with pdf

f(x) =	 x >_ 1, v > 0.

(a) Discuss the distribution of the following random variables:

(i) X1:2 , (1i) X2:2 - X1:2,	 (iii) X2:2/X1:2.

(b) Can you predict analogous results for order statistics based on
samples of size larger than 2?

3. Let X1 and X2 be i.i.d. random variables from a population with pdf

f(x) = sin x,	 0 <x <ir

= 0,	 otherwise.

(a) Determine the distribution of X2.2.
(b) What about X,, : ,, based on a sample of size n?

4. Let X 1 and X2 be i.i.d. Exp(0) random variables. Define

Z = X1:2/(Xi + X2 ) and W = X 1 /(X1 + X2).

Determine the distributions of Z and W.

5. Now try Exercise 4 with n = 3. In other words, discuss the distributions
of

3X1:3	 X2 :

Xi( E 1x ' ^i=1

X 1 X1 + X2
and (W1, W2) =Z2 ) =(Z 1 ,	 3 ,

^i=1 Xi ^i=1 Xi )'

6. Let X 1 , X2 , X3 , and X4 be i.i.d. Exp(1) random variables. Then, find

P(3 < X4:4) and P( X3:4 ? 2).

7. Let X 1 , X2, and X3 be i.i.d. random variables from a triangular distribu-
tion with pdf

f(x)=2x,	 0<x<1

= 0,	 otherwise.

Calculate the probability that the smallest of these X i 's exceeds the
median of the distribution.
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8. For the Pareto distribution with density function

f(x) = vx - ° - ',	 x >— 1, v > 0,

show that

I'(n + 1) 1'(n — i + 1 — m/v)(m)
µ`" — 1' (n — i +l) 1'(n +1 — m/v)

which exists for v > m/(n — i + 1). Similarly, show that

	(m ,," )	 1'(n + 1)	 I'(n — j+ 1— mj/v)	)
	 1'(n —j+1) 1'(n— i + 1—m ;/v)

1'[n — i + 1 — (m 1 + m i )/v1

which exists for

m^ 	mi + mi
v > max 	

n—j+l
,

 n —i +1 .

(Huang, 1975)

9. For the standard exponential distribution with density function

f(x) = e --',	 x >- 0 ,

show that

µ l:n = 1/n and 0- 1 , 1: „0- 1 , 1: „= 1/n 2 .

What can you say about the distribution of X 1 :n? More generally, can
you show that

n	 n

x
1'[n + 1 — (m,+ m i )/vI

lai :n — E l/r and
r=n-i+l

E
r=n -i+ 1

1/r2?

(See Section 4.6 for details.)

10. Let X be a random variable with density function

1 	^r
f(x) = 2 cos(x),	 IxI s 

2
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This is referred to as the sine distribution, since U = sin X is uniformly
distributed over [-1, 11. Show in this case that

µ,, „	 2 l l - 
(2n12 -z„ -i)).

=	 l n J

Can you derive an expression for o-„,„ . „?
(Burrows, 1986)

11. Consider the triangular distribution with density function

	f(x) = I - lxl,	 -1 <x < 1,

and cdf

	F(x) = =,(1 +x)`,	 -1 <x < 0

= 1 - ;(l -x) 2 ,	 0 < x < 1.

Derive an explicit expression for µ, ,, and Q,,, „ in this case.

12. Consider the Weibull population with density function

	f(x) =e .' 6x i	 x > 0, 	 > 0.

In this case, show that for i = 1, 2, ... , n,

n! 	f	 m 1(»,) = 	  I' j	 1 + — f
µ`"	 (i - 1)!(n - i)! `	 S

^ -i
x E (— l) r ( i r

 1
)1(n -i + r + l) i + ,n/n

Can you similarly derive an expression for the product moment  p, ;.,,?
(Lieblein, 1955; Balakrishnan and Cohen, 1991)

13. For the logistic distribution with density function

f(x) _ e -.,
/( 1 +
	

- x <x<x ,

show that the moment-generating function of X,,„ is

+t)l'(n -i+ 1 - 1)
M;: „(t) = E(e'x, ,,) =  

I'(i)I'(rr — i + I)
I < i <n.

I' -o
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Then, show that for i = 1, 2, ... , n,

Ni:n = 	 — r[i(n — i + 1) and o; ; = tfi'(1) + iy'(n — i + 1),

where ik(z) = d/dz log f(z) = r(z)/f(z) is the digamma (or psi) func-
tion and 4r'(z) is the derivative of *(z) known as the trigamma function.
(See Section 4.8 for details.)

(Birnbaum and Dudman, 1963; Gupta and Shah, 1965;
Balakrishnan, 1992)

14. Consider a gamma population with density function

1
f(x) —

I'( p) 
e -sxp-1,

where p is a positive integer. Show in this case that

1 (n - 1Xp -1)
1,072)  —	 L ar( p, n

r(P)	
— 1)I^(m + p r) /nm +p +r-1

r=0

where a r(p, N) is the coefficient of x' in the expansion of

p- 1	 N

E x!/1! .
t-o

Show then that for 2 < i 5 n,

n!

(n—i+rXp-1)
X	 E	 as(p,n—i+r)(n—i+r+1)m+p+s•

s=o

Can you suggest a recursive process for the computation of the coeffi-
cients a r(p, N)? Can you similarly derive an expression for the product
moment p :„ for 1 5 i < j 5 n?

(Gupta, 1960, 1962; Balakrishnan and Cohen, 1991)

(i — 1)!(n — i)!r(P) 
ö (-1) ' (I 

r 1)
I"imp   

1'(m +p+s)

15. A distribution F(x) is said to be an IFR (increasing failure rate) [DFR
(decreasing failure rate)] distribution if the conditional survival probabil-
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ity is a decreasing (increasing) function of age, viz.,

1 — F(x + t)
P(tlx)	

1 — F(x)

is decreasing (increasing) in 0 < x < co for every t >— 0, or, equivalently,
when the failure or hazard rate

1 F(x + t) — F(x)
h(x) = 

-
lim 	

	

 o t	 1 — F(x)

	

1	 1 — F(x +t)
= lim — 1 	  i

1—F(x)	
is increasing (decreasing) in x >_ 0

r+ot 

[h(x) = f(x)/(1 — F(x)) whenever the density f(x) exists]. Prove that if
F is IFR, so is F1:n .

(Barlow and Proschan, 1981)

16. A distribution F(x) is said to be an IFRA (increasing failure rate
average) [DFRA (decreasing failure rate average)] distribution if

1
— —

x 
log{ 1 — F(x) } is increasing (decreasing) in x >_ 0.

It should be noted that — log(1 — F(x)} represents the cumulative failure
rate foh(u) du when the failure rate h(u) exists. Prove that if F is IFRA,
so is Fi , „.

(Barlow and Proschan, 1981)

17. If Fi :„ is IFR, then show that Fi+ i : n is also IFR for i = 1, 2, ... , n — 1.
Similarly, show that F, _ 1:  n is DFR whenever F;  n is DFR for i =
2,3,...,n.

(Takahasi, 1988)

18. If Fi : ,, is IFR, then show that Fi: ,,_ 1 and F,+l:n+1 are also IFR (in
addition to Fi+ 1 : ,,). Similarly, show that if F,.,, is DFR then Fi _ I : n 1
and Fi: „ +1 are also DFR (in addition to F; _ 1: ,,).

(Nagaraja, 1990)

19. Show that the results given in Exercises 17 and 18 continue to hold when
IFR and DFR are replaced by IFRA and DFRA, respectively.

(Nagaraja, 1990)

20. A distribution F(x) is said to be a NBU (new better than used) [NWU
(new worse than used)] distribution if the conditional survival probability
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(1 — F(x + y))/(1 — F(x)) of an unit of age x is smaller (larger) than
the corresponding survival probability 1 — F(y) of a new unit; that is, if

1 —F(x +y) <(>){1 —F(x)} {1 —F(y)),	 for x>_0, y >_0.

Show then that the results given in Exercises 17 and 18 continue to hold
when IFR and DFR are replaced by NBU and NWU, respectively.

(Nagaraja, 1990)

21. For the standard uniform population with density function

f(u) =1,	 0< u <1,

prove that the random variables U : n/Uj : n and L5, for 1 5 i < j < n,
are statistically independent. What can you say about the distributions of
these two random variables? (See Section 4.7 for more details.)

22. For the standard exponential population with density function

f(x)=e X ,	 0<x<co,

prove that the random variables nX 1: n and (n — 1X X2
:  

— X1: n) are
statistically independent. What can you say about the distributions of
these two random variables? (See Section 4.6 for more details.)

23. For r = 1, 2, ... , n — 1, show that

F,:n(x) = Fr+I:n(X) + 0) {F(x) } 1. {1 — F(x)}" 
r

and

Fr:n(X) = Fran-I(X) + ( nr — 1) (F(x))r{1 — F(x))" r .

(For more such recurrence relations, refer to Chapter 5.)
(David and Shu, 1978)

24. Life rapidly becomes complicated when we do not require Xi's to be
identically distributed. For example, consider X I , X2, and X3 to be
independent random variables with X, having an Exp(0 1 ) distribution
(i = 1, 2, 3); assume that O,'s are distinct.

(a) Determine the density function of X I . 3.

(b) Determine the density function of X2 : 3.

(c) Are X1 : 3 and X2 : 3 — X1 : 3 independent?

(d) Are X2 : 3 — X i : 3 and X3:3 — X2:3 independent?

 



CHAPTER 3

Discrete Order Statistics

3.1. INTRODUCTION

The basic distribution theory of order statistics developed so far has assumed
that the random variables constituting the random sample are absolutely
continuous. In this chapter we explore the discrete case, where the basic
assumption is that X I , ... , X„ are i.i.d. random variables having a common
discrete cdf F. We present formulas for the probability mass function (pmf)
of a single order statistic and the joint pmf of two or more order statistics.
We study the dependence structure of order statistics in random samples
from discrete populations and discover that, in contrast to the continuous
case, the X,.,,'s do not form a Markov chain. We also derive an expression
for the pmf of the sample range, W,, . We discuss two examples in detail,
namely, when the parent is discrete uniform and when it is geometric. Order
statistics from the binomial and Poisson distributions will be studied in
Chapter 4. In the last section we discuss the distribution theory of order
statistics when we have a simple random sample drawn without replacement
from a finite population consisting of distinct values. In such samples, while
X,'s are identically distributed, they are no longer independent.

Several of the asymptotic results to be developed in Chapter 8 are
applicable to discrete populations also. These will be pointed out at appro-
priate places in that chapter. Further information on the properties of order
statistics from discrete distributions may be found in the discussion article,
Nagaraja (1992), which also contains a survey of the literature.

3.2. SINGLE ORDER STATISTIC

We will now obtain three expressions for the pmf of the ith order statistic.
The first two are based on the expressions for the cdf F;: „(x) obtained in
Section 2.2. The last one is based on a multinomial argument. We also obtain
expressions for the first two moments of X, ,,.

41
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Approach 1 (Binomial Sum)

Recall (2.2.13), which yields an expression for Fi: „(x). In the discrete case,
for each possible value x 

(

of Xi: „, we have

fi:n(x) = Fi:n(x) — Fi:n(x —).

Consequently, we may write

fi:n(x) = E (r){[F(x)y[l - F(x)]n - r
 — [F(x —)1 r ^1 — F(x —)^ n—

r
).

r =i	 L

(3.2.2)

One can similarly use the negative binomial sum form for Fi: „(x) discussed
in Chapter 2 to obtain another representation for f

Approach 2 (Beta Integral Form)

While the preceding expression is better for computational purposes, an
expression for fi: „(x) in the form of an integral is useful for studying the
dependence structure of discrete order statistics. It makes use of the form of
Fi:n(x) given in (2.2.15) and (3.2.1). In other words,

fi:n(x) = C(i; n) f
 F(x) u , -1 (1 — u) n r du,	 (3.2.3)

F(x—)

where

n!
C(i; n) — 	

(i — 1)!(n — i)! •
(3.2.4)

Approach 3 (Multinomial Argument)

In the absolutely continuous case, an argument involving multinomial trials
was used to obtain the pdf of X;  given by (2.2.2). That idea can also be
used here. But the final expression for the pmf of Xi: „ thus obtained is more
complicated. This is precisely because the chance of ties is nonzero.

With each observation X we can associate a multinomial trial with three
outcomes (X < x), {X = x), and (X > x), with corresponding probabilities
F(x — ), f(x), and 1 — F(x), respectively. The event (X1: „ = x) can be
realized in i(n — i + 1) distinct and mutually exclusive ways as follows:
(i — 1 — r) observations are less than x, (n — i — s) observations exceed x,
and the rest equal x, where r = 0,1, ... , i — 1 and s = 0,1, ... , n — i. Thus,
we obtain

(3.2.1)

n —i—s{ f(x) }s+r+1

fi:n(X) = E E (i — 1 — r)!(n — i — s)!(s + r + 1)!	
(3.2.5)

i-1 n —i n! {F(x —) } r - 1 — r{1 — F(x)}
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EXAMPLE 3.1 (discrete uniform distribution). Let the population random
variable X be discrete uniform with support S = {1, 2, ... , N). We then
write, X is Discrete Uniform [1, NJ. Note that its pmf is given by f(x) = 1/N,
and its cdf is F(x) = x/N, for x E S. Consequently, the cdf of the ith order
statistic is given by

n

F	 (n)(N/rtl — NI 
r

r: n x( )— ^ r
r =i

xE S.

One can use the tables for the cdf of the binomial distribution directly for
selected x and N. For example, when N = 10, every x in S can be expressed
as x = 10p, p = 0.1(0.1)1.0. Thus, for x E S,

Fi:n(x) = L ( r )pr(1 —p)" - r e
rai

which can be read from the binomial tables, and fi : n(x) can be obtained
using (3.2.1).

Moments of Xi:n

As pointed out in Chapter 1, we can use the transformation Xi : n = F- '(UU :n )
to obtain the moments of X1 . n . For example, we can express the mean of
Xi:n as

I
µ i:n = C(i; n) I F- '(u)u i- '(1 — u) n- ` du,

0

where C(i; n) is given by (3.2.4). However, since F- '(u) does not have a nice
form for most of the discrete (as well as absolutely continuous) distributions,
this approach is often impractical. When the support S is a subset of
nonnegative integers, which is the case with several standard discrete distri-
butions, one can use the cdf F, :n(x) directly to obtain the moments of X . n .

Theorem 3.2.1. Let S, the support of the distribution, be a subset of
nonnegative integers. Then

W	

if= i:n = E {l — Fi:nl x )}^
x =0

and
00

Ni2ln = 2 E x ( l — Fi:n(x)) + N'i:n+
x-0

whenever the moment on the left-hand side is assumed to exist.

(3.2.6)

(3.2.7)
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Proof. First let us note that if µ i : „ exists, kP(Xi : „ > k) -► 0 as k -* oo.

(Why?) Now consider

k 	^^k--++
E xfi:n(x) = L.^ x{P(Xi:n >x — 1) — P(Xi:n > x))

x= 0	 x=0

k-1

= E ((x + 1) - x)P(X;: „ > x) - kP(X;: „ > k).
x=0

On letting k -► co, we obtain

	k — I	 co

= Ilm E P(Xi:n > x) = E {1 — Fi:n(x)},
	k—' 0D x =0	 x= 0

which establishes (3.2.6). To prove (3.2.7), we begin by noting that

k - 1

E xZft:n(x) = E {(x + 1) 2 — x 2 }P(Xi:n > x) — k 2P(Xi:n > k)
x=o	 x =0

k-1	 k-1

= 2 E xP(Xj:n > x) + E P(Xj:n > x) - k 2P(Xi:n > k).
x-0	 x-0

As k --0 co, the last term on the right-hand side approaches 0, while the
middle term approaches µ;. Thus, we obtain (3.2.7). 	 0

In general, these moments are not easy to evaluate analytically. Some-
times, the moments of sample extremes are tractable. Let us see what
happens in the case of discrete uniform distribution.

EXAMPLE 3.1 (continued). When X is a Discrete Uniform [1, N] random
variable, in the case of the sample maximum, (3.2.6) yields

N

Iln:n = E {1 — Fn:n(x)}
x =0

N-1

= E (1 — (x/N)n)
x=0

= N -( E  x"
N-1 /N".	 (3.2.8)

The sum on the right-hand side of (3.2.8) can be evaluated easily. Abramowitz
and Stegun (1965, pp. 813-817) have tabulated it for several n and N values.
For n up to 10, algebraic expressions for the sum are available in Beyer

x = 1
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(1991, p. 414). Using these, we can conclude, for example, that

µ2:2 = (4N — 1)(N + 1)/6N and µ3:3 = (3N 2 + 2N — 1)/4N.

Further, from (32.7),

N-1

tl.(P.n = 2 E x(1 — (x/N)n } + N•n:n
x=1

2 N-1

= N(N — 1) 
— Nn E x

n +
1 + N^n:n

x=1

= N(N — 1) + 2 N(µn+1:n +1 —10 + t't'n:n7

and hence,

^n
z
:n = 2 Nµn+l:n+1 — N — N 2 + l2' n:n — ^'

2
n:n•

When n = 2, using the values of µ2:2 and µ 3 . 3 , we obtain

2 	(2N2 + 1)(N 2 — 1)
X2:2 36N2

(3.2.9)

3.3. JOINT PROBABILITY MASS FUNCTION

We now obtain the joint pmf of k order statistics represented by
X; , . n , ... , X;k : n , where 1 < i 1 < i 2 < • • < i k < n. A convenient form for
the pmf can be presented as an integral. For this we start with an integral
form for the joint pmf of all order statistics and sum with respect to the
remaining order statistics. Here the challenge is in keeping track of the
number of ties among the observed values.

Let x 1 < x 2 < • • • < x n be such that x 1 = • • • = x,, < x, i+1 = • • =
x, 2 < • • • = x < x,._, +1 = • • • = x 1 < r 1 < r2 < • • • < rm = n, for
some m, 1 < m < n. Then with ro = 0,

^ /	 ^m̂
J

'jj 11 ( Xs)J r:
— ^, ^

1,2...., n:nl X 1 , •••, Xn) —_ n.11
s=1 (rs — rs-1)!

=n!
I du l du 2 ••• du n ,	 (3.3.2)

where

D = {(u 1 , ... , u): u 1 < u 2 < .. •	 u n , F(x —) < u, < F(X. ),

1 <s<m,rs _ 1 +1 <t<rs}. (3.3.3)

(3.3.1)
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When k < n, for x;, 5 x ;2 5 • • 5 x ;k,

..... ik:n(x ;l,x ;2 ,...,x ik ) = Ef1,2 	 n:n(x i ,..., Xn), (3.3.4)

where E stands for the sum over all x r's other than x ;i , ... , x i, subject to
x 1 5 x2 5 • • • 5 x. On using the representation (3.3.2) for f 1

, 2 ... , n : n , the
right-hand side of (3.3.4) can be expressed as ME, ID  du i • dun, where
Di's are disjoint and are of the form of D given by (3.3.3). These Di 's
correspond to distinct configurations of ties among x,'s. Further,

UDr = {(u 1 ,...,un ):u 1 5 •	 <un ,F(X ;, -) 5u ;r 5F(X ;r),15r5k}.

(3.3.5)

Thus, we obtain

11 1 ,12 ..... ik.n(xjl, x ;2 ,..., x ;k ) = nil	 du i du2 • • • du n ,	 (3.3.6)
up,

where U D, is given by (3.3.5). On integrating out u r's for r other than
i 1 , i 2 , • • • , 1 k we get, with i0 = 0 and u 0 = 0,

k	 -I

f dui • • • dun = {(n - ik)! f (1r — i t -1 — 1)!)
U D,	 r=1

X f S n ( u ;, - u ;^ ^ )`'-`' ' -11( 1 - u;)n-ik du; , ... duik,

B r=1	 JJ

where B is the k-dimensional space given by

B = {(u...,u ;k ):u ; ^ Su ;2 5 ••• 5u ;k ,F(x,-) Su,SF(x,),

r = i i ,i2 ,...,ik}. (3.3.7)

This discussion can be summarized as follows.

Theorem 3.3.1. For 1 5 i 1 < i 2 <
Xi , :n,..., 	is given by

<ik S n, the joint pmf of

i2 , 	  ik :n(X;i, X i2 ,..., X ;k )

= C(i i ,i2 ,...,l k +n)

(	 ,) i
k

X 1 n(ui, - ui.	
,-i,_,-1 (1 - uik)n-i k du;, ... du ;k, (3.3.8)

B r=1
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where i o = 0, u0 = 0,

	C(i l ,...,i k ;n	 n! 	n —i \^ k 
// i	i _	 0! 1,	 (3.3.9	) 	

1 (	
k ) ^ l r	 r I

	)

and B is given by (3.3.7).

The above result expresses the joint pmf of k order statistics as a k-fold
integral. The region of integration, B, can be expressed as a product space of
subspaces of lower dimensions as long as the order statistics are not tied. For
example, in the case of no ties, B is a k-dimensional rectangle. However,
even in this case a simple expression for the joint pmf is not available unless
the order statistics of interest are consecutive ones.

Besides providing a compact form for the joint pmf, the integral expres-
sion in Theorem 3.3.1 becomes a handy tool in obtaining simplified expres-
sions for the product moments of order statistics when the support of the
distribution consists of nonnegative integers. For example, it follows from
Balakrishnan (1986) that

(2) + ( n ) L (X[(F(X)}  - {F( x - 1) }` ] ^ { - F( y )
}1= 	 ` 1	 ^

x=o	 y=x

(3.3.10)

for 1 < i < n — 1. He also gives a similar expression for µ i j:n for j > i + 1.
The relation in (3.3.10) connects the product moment with the second

moment of a single order statistic, which can be computed using (3.2.7). The
sum on the right-hand side can be explicitly evaluated for the geometric
distribution. (See Exercise 17.)

Theorem 3.3.1 is also helpful in establishing the non-Markovian structure
of discrete order statistics. This will be discussed in the next section.

One can also use the multinomial argument to obtain the joint pmf of
Xi s : n

, ••• , Xik : n However, it becomes messier with increasing k and will
involve multiple sums. We have seen from (3.2.5) that even for a single order
statistic, the form is not pleasant. In Exercise 6 you will see how bad it gets,
even for k = 2!

Another approach to find the joint pmf of two order statistics is to use
differencing of their joint cdf. That is, use the representation

fi,j:n('xie xj) = Fi,j:n(x i' xj) — Fi,j:nl x i —' xj)

xj — ) + Fi j:n( x i — , xj —), (3.3.11)

where the expression for Fi j ,,, is the same as in the absolutely continuous
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case, and is given in (2.3.9). Instead, if we use the representation in (2.3.11)
for F,•, j : n , the resulting expression for the joint pmf fi,, : n will be of the form
given in Theorem 3.3.1. (Can you verify this?)

3.4. DEPENDENCE STRUCTURE

While order statistics from an absolutely continuous cdf exhibit Markovian
dependence, such is not the case in general for discrete order statistics. To
lay the groundwork, we begin with the following lemma, whose proof is
developed in Exercise 8.

Lemma 3.4.1. For 0 5 a < b 5 1 and positive integers r and s with
r < s,

(b — a)
f 

bu'(1 — u) S r du < 'bur du f b(1 — u ) s-r du. (3.4.1)
a	 a	 a

We are now ready to prove the result which establishes the fact that the
order statistics from a discrete distribution with at least three points in its
support fail to form a Markov chain.

Theorem 3.4.1. For 1 < i < n,

P(Xi+1:n = ZlX, :n = y, X;-1 :n = x) < P(X;+1:n = ZIX = y), (3.4.2)

where x < y < z are elements of S, the support of the parent distribution.

Proof. Since x < y < z, from Theorem 3.3.1, we can write

and

fi-1,i,i+1:n(x, y, z)

F(x) 1-2 F(y)
= C(i — 1, i, i + 1; n)f	 u i _ l dui_1 I 	du;

F(x-)	 F(y-)

f	 n —i -1x F(z)
 ( 1 — u i +1)	 du; +1

F(z—)
(3.4.3)

/ F(x) i	 F(Y)
fi—1,i:nl x, y) = C(i — 1, i; n)f	 ui

-2
—1 du i1 f 	dui.

F(x-)	 Fly—)

(3.4.4)
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Thus, for x < y < z, it follows from (3.4.3) and (3.4.4) that

P(Xi+l:n = ZIXi:n = Y, Xi_i:n = x)

fi—1,i:n( x, y)

F(z)	 n i 1_ (n - i) {F(Y) - F( y -)} 
JF(z -)(1 - u i +1) 	/ dui +1

 , (3.4.5)
j^(Y? )(1- u i )

n
 du i

since (3.3.9) implies that (C(i - 1, i, i + 1; n)/C(i - 1, i; n)} _ (n - i). Fur-
ther,

fi,i+l:n(Y, Z) )

fi:n(Y)

fF(y)
— ) 

ui -1
r	 i F(z-

du fF(z) (1 -	 " -i -1 du i+1u i+1)	 r+1
= (n - i)

fF(y )) ur;-1(1 - u i )" - ' du i(v

(3.4.6)

from (3.2.3) and (3.4.4). On using (3.4.1) in (3.4.6), it follows that

P(Xi+l:n = ZIXi:n = y)

> (n - i) 
{F(Y) - F(

 n
 )}  rF(z) ( 1 - ui+1)

n-i-1 
dui+1F(y)	 J

JF(y-)(1 - U i )	 du i F(z )

= P(Xi+l:n = ZIXj:n = y, Xi_i:n = x)

from (3.4.5). Thus, we have shown that (3.4.2) holds. 	 ❑

P(Xi +1:n = ZlXi:n = Y)

The inequality in (3.4.2) has two messages. First, it shows that as long as S
has at least three points, the X.  n 's do not form a Markov chain. But when S
has one or two points, such a situation does not arise. In these cases, it can
be shown that Xi : n 's possess Markovian structure. (See Exercise 9.) Second,
(3.4.2) says that whenever x < y < z, the conditional probability assigned to
the event {Xi+ 1 : n = z} given (Xi,n _ y, Xi _ i : n = x) is smaller than the
probability assigned to the same event given {X i: n = y}. A natural question
would be about the behavior of the conditional probability when we have
further information about the past (about several previous order statistics).
More generally one can look at the behavior of the conditional probability
P* =P(Xi+1•n -x••• , Xj:n - XjIXi:n =xi,..., Xk:n = xk), where 1
k < i < j 5 n. When i, j and n are held fixed, P* turns out to be a function
of two variables v 1 and v 2 , where v 1 is the number of x r 's with r < i that are
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tied with x i , and v 2 represents the number of x,'s with r > i that are tied
with x i. A detailed study of the behavior of P* may be found in Nagaraja
(1986b).

Even though X. „'s do not form a Markov chain, by expanding the state
space into two dimensions, one can obtain a Markov process. Rüschendorf
(1985) shows that the bivariate sequence (Xi ; „, Mi) forms a Markov sequence
where At; is the number of Xk „'s with k 5 i that are tied with
Further, conditioned on appropriate events, the Xi: „'s exhibit Markov prop-
erty (Nagaraja, 1986a). For example, conditioned on the event that Xi's are
all distinct, the order statistics form a Markov chain (see Exercise 11).

3.5. DISTRIBUTION OF THE RANGE

Let us start with the pmf of the spacing W,•, 1; „ = Xj; „ — Xi; „. On using
Theorem 3.3.1, we can write

P(Wj ; „ = w)

= E P(Xi; „ =x,	 = x + w)
xES

F(x) F(x +w) i i	 j-i-t	 -1
= C(i, j; n) ^ f	 f	 u i (u; — ui)	 ( 1 — u^)n dui du i .

xES F(x-) F(x +w-)
u i <u)

(3.5.1)

Substantial simplification of the expression in (3.5.1) is possible when i = 1
and j = n, that is, in the case of the sample range W„. We then have

F(x)
P(W„ = w) = C(1, n; n) E f	

fF(x +w)
 (u,,—  u 1 )

„-2
 du„ du i .

xES F(x-) F(x +w -)
u i <u„

Thus, the pmf of W„ is given by

P(W„	 no0) = n — 1) E 
I 

F(x) 
f

F(x)
( u„ — u1) n-2 du„ du i

xES F(x-) F(x-)
u l <u„

= E (F(x) — F(x —)} n

xES

= E (f(x)} „ , (3.5.2)
xES

 



GEOMETRIC ORDER STATISTICS
	

51

and, for w > 0,

F(x) F(x +w)P(W" = w) = n(n — 1) E I	 I	 ( un — /41) n-2 du n du i
xES F(x-) F( x+w -)

= E ([F(x + w) - F(x —)]" — [F(x + w) — F(x)] n

xES

—[F(x + w —) —F(x — )] " + [F(x+w — ) — F(x)] " }.

(3.5.3)

Expressions (3.5.2) and (3.5.3) can also be obtained without using the integral
expression from Theorem 3.3.1. One can also use a multinomial argument to
obtain an alternative expression for the pmf of W". The resulting expression
may be found in Exercise 13.

EXAMPLE 3.2 (discrete uniform distribution). When X is a Discrete
Uniform [1, N] random variable, the expressions in (3.5.2) and (3.5.3) can be
further simplified. We then have

1 	 1
P(Ŵ =0) _	 (—) _ 	

x _1 N	 N"- 1

and

N—w{(x +w X - 1 "	 X+w x "
	P(W" = w) = E  	N	 )  ( 	 N	 N )x-1

(x+^ - 1 xNl ) "+ ( x+^ -1

N—w 1

E n {(w + 1) " — 2w" + (w — 1)"}
x=1 N

(N — w)

N"
	{(w+ 1)

" —
2w"+(w— 1)"),

w = 1,..., N — 1.

Using the above pmf, one can determine the moments of W. For example,
when n = 2, E(W2 ) = (N 2 — 1)/3N and E( WW) = (N2 — 1)/6. Thus, we
obtain owe = var(W2 XN 2 — 1X N 2 + 2)/18N 2 .

3.6. GEOMETRIC ORDER STATISTICS

As we have already seen, in general, the distribution theory for order
statistics is complex when the parent distribution is discrete. However, order
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statistics from the geometric distribution exhibit some interesting properties.
Even though the geometric distribution possesses several properties (like lack
of memory) of the exponential distribution, their order statistics differ in
their dependence structure. But there are marked similarities. We discuss
them in Section 4.6, where representations for the exponential and geometric
order statistics, given, respectively, by (4.6.19) and (4.6.20), demonstrate the
closeness in their dependence structure.

Now, let us explore the properties of geometric order statistics. We say X
is a Geometric(p) random variable if it has the pmf

f(x) =q xp , 	x = 0,1,2,...,

where 0< p< l and q=l-p.
The distribution of the sample minimum from a geometric distribution is

given by

P(Xl:n > x) =1 - Fl:n(x) _ (1 - F(x))"
= q n(x+ 1),	 x = 0,1, 2, . . . ,

and

fl:n(x) = Fi :n(x) - F1 :n(x — 1)

_ (q") x (1 - q"),	 x = 0,1,....	 (3.6.1)

Thus, X1:n is a Geometric(1 - q") random variable. In other words, X and
X1: " come from the same family of distributions. This is true for the
exponential parent also.

The distributions of higher order statistics are not so nice for the geomet-
ric distribution. Now, for the sample range Wn , from (3.5.2), we have

CO

P(Wn = 0) = E (pgx)n =pn/(1 — gn),	 (3.6.2)
x=0

and from (3.5.3) we get

P (Wn = w)

= ^'`
l

^(qx _ q x +w+1 )n _ (q x +l _ q x +w+1 \"

x(=^0	
1

_ ( qx — q x +w) ^ + (g x+1 _ q x +w) "1 (3.6.3)

= 1 1qn {(1 - q w +1)" - (1 - qw) n - q"[(1 - qw) n - (1 - qw- 1 ) n , },

w > 0. (3.6.4)
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Thus, the pmf can be easily evaluated for a given p and n, from which
we can obtain E(WW) and var(W,). When n = 2, we get P(W2 = w) =
2pq"'/(1 + q), w > 0. Hence, it follows that E(W2 ) = 2q/{p(1 + q)}
and E{W2(W2 — 1)} = 4q 2/{p 2(1 + q)}. This yields var(W2 ) = 2q(1 + q 2)/
(p 2(1 + q) 2 }.

Finally, let us look at the joint distribution of X1„n and Wn . Since

P(X1:n = x, W, = w) = P(Xi:n = x, Xn:n = x + w),

we have

P(Xl:n = x, Wn = 0) = (.f(x))
n

= { pqx }n	
tt= q"(1 - gn){pn/(1 — q")}

= P( Xl:n = x)P(Wn = 0),

on recalling (3.6.1) and (3.6.2). For w > 0,

(3.6.5)

P(X1:n = x, Wn = w) = [F(x + w) — F(x An — [F(x + w) — F(X)In

— [F(x + w —) — F(x —)]"

+[F(x + w —) — F(x)] n ,

which is nothing but a single term of the sum appearing in the right-hand
side of (3.6.3). Quite easily, it can be seen that

P(Xl:n = x, Wn = w) = P(X l:n = x)P(Wn = w),	 w > 0, (3.6.6)

where the two marginal probabilities on the right-hand side are given by
(3.6.1) and (3.6.4), respectively. From (3.6.5) and (3.6.6) we can declare that
XI : n and Wn are independent random variables. In fact, the geometric
distribution is the only discrete distribution (subject to change of location and
scale) for which X I : n and the event {Wn = 0) are independent. For a sample
of size 2, we prove this assertion in Exercise 20.

3.7. ORDER STATISTICS FROM A WITHOUT-REPLACEMENT SAMPLE

The discussion of discrete order statistics has so far assumed that the Xi 's are
independent and identically distributed. While sampling from a finite popula-
tion, this assumption is valid if the sample is drawn at random with replace-
ment. If it is drawn without replacement, while the Xi 's are still identically
distributed, they are no longer independent. Let us now see what happens in
that situation, assuming that the population values are all distinct.

 



54	 DISCRETE ORDER STATISTICS

Let 4<x?‹ • • • < 4 be the ordered distinct population values mak-
ing up the population of size N. Then on using a multivariate hypergeometric
type argument, we can write, with n 5 N,

( k -
1 ) (n - k)

f,.:n xk( °)- 

( n)	

,	 i S k S N- n+ i,	 (3.7.1)

and the cdf of	 is given by

F; : n (xk) = P(at least i of the n sampled values do not exceed x2)

- ^ ( r )( n-r) (n)'
r=t

where for integers a > 0 and b, (y) is interpreted as 0 whenever b< 0 or
b> a.

The joint pmf of X; :„ and X,., is given by

xo x?) -1 ) (1-k - 1 ) -
1)/(N) ,fi,i: „( k' 	

(k
i

	(N
-1-i-1 n -j	 n

i5k<15N-n+j and l-kzj-i.
(3.7.2)

Closed-form expressions for the first two moments of order statistics can
be obtained when the population values are labeled 1 through N; that is,
when x22 = k. Then we will be sampling (without replacement) from a
discrete uniform distribution. We now obtain these moments for this special
case by introducing exchangeable random variables Y1 , ... , Yn + 1 defined by

Y,.= X - Xr-I - 1,	 (3.7.3)

where Xo: „ = 0 and X+1 _ (N + 1).
Then, for nonnegative integers y 1, y2, • • • , Yn + 1 such that E; ±i y, = N - n,

P(Y1 = Y i , Y2 = y2,... ) 11n+1 = Yn+1)

= P(Xl:„ = Y1 + 1, X2:n = y1 + y2 + 2,... , Xn:n = N - yn+1)

1
(3.7.4)

(try, )

From (3.7.4), it is evident that Y1 , . . . , Y„ + 1 are exchangeable random vari-
ables. We now use arguments involving symmetry to obtain the means,
variances, and covariances of the Y's. First note that E; + Y, = N- n, and

 



n(n + 1)(2n + 1) 2 n(n — 1)(n + 1)(3n + 2)

6
	0.1 

+	 12	 0.1z

n(N + 1)(N — n)

12

From (3.7.6) and (3.7.9) we obtain
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hence

E(Y1) _ (N — n)/(n + 1). 	 (3.7.5)

Further, since var(E;ä i Yr) = 0, we have

(n + 1)0.i + n(n + 1)0.12 = 0, 	 (3.7.6)

where ai = var(Y1 ) and 0.12 = cov(Y1 , Y2 ). Now, (3.7.3) can be rearranged in
the form

Xi:n = i + 1:17r,
r=1

Thus, on summing over i, (3.7.7) yields

1 < i < n.	 (3.7.7)

n(n + 1)
E L.^ Xi = ^ Xi:n = 	 2 	E rYn -r+ l

i =1	 i = 1	 r=I

Hence,

n	 n-1	 n 	n

0.	 r2	 0.	 rs 	X^i ^ z +
2 Iz ^ ^	 E ^ )

.
r=1	 r=1s=r+1	 1=1

(3.7.8)

Since we are sampling without replacement, var(E7= 1 X,) = n(N — n)0. 2/
(N — 1), where o 2 = (N 2 — 1)/12 is the variance of the discrete uniform
distribution. Further, the sums on the left-hand side of (3.7.8) have compact
forms. Using these, (3.7.8) can be expressed as

(3.7.9)

0. 2 — n(N + 1)(N — 
n) and

1 	(n + 1) 2(n + 2)
0.12 = — 0.i /n .
	 (3.7.10)

Now we are in a position to compare A i ,  n 's and 0.i, i :
 n 's using (3.7.7). First,
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from (3.7.5) we conclude

= i( N + 1)/(n + 1).	 (3.7.11)

Next, since var(X;: „) = i0 + i(i — 1)x12 , we obtain from (3.7.10)

2
n =—

i(n — i + 1)(N + 1)(N— n)

(n + 1) 2(n + 2)
(3.7.12)

Now for i < j,

i(n — j + 1)(N + 1)(N — n)
°,. i:„ = ioi + i( j — 1)0'12 — 

(n + 1) 2(n + 2)	
. (3.7.13)

From (3.7.12) and (3.7.13), one can compute p; , ; : „, the correlation be-
tween X; : „ and Xj : „. Clearly,

i(n —j+1)
Pi,j :n=	 j(n —i + 1 ) '

i 5 j.	 (3.7.14)

This matches the correlation coefficient of X;: „ and Xj: „ from the continu-
ous uniform parent. The similarity goes beyond that. These discrete order
statistics also behave like a Markov chain. This is in contrast with the
situation where sampling is done with replacement. Note that in that case we
could not find closed-form expressions for the moments of order statistics
either.

In our discussion we have introduced exchangeable random variables in
order to obtain the means and covariances of the order statistics. But, on
employing some tricky algebra, we can also obtain them directly by using
their pmfs and joint pmfs given by (3.7.1) and (3.7.2), respectively. That is
pursued in Exercises 21 and 22.

EXERCISES

For Exercises 1-4 assume that a fair die is rolled three times. Let X1 denote
the outcome of the ith roll for i = 1 to 3.

1. (a) What is the probability that the outcomes of the three rolls are the
same?

(b) Find P(X1 < X2 < X3).
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2. Let Z 1 = min(X 1 , X2 ) and Z2 = max(X 1 , X2 ).
(a) Find the joint pmf of Z 1 and Z2 by looking at the sample space of

the experiment representing the first two rolls.
(b) Find the marginal pmfs of Z 1 and Z2 .

(c) Find the correlation between Z 1 and Z2 .

3. Let Y1 denote the smallest value, Y2 denote the median value, and Y3
denote the largest value among the outcomes of the three rolls.
(a) Show that the pmf of Y 1 can be expressed as

7	  
3

g(Y1) = 	 6 y  ) 
—{ 

6 

6 Y1 = 1,2,...,6.

(b) Evaluate g(y 1 ) explicitly and use it to obtain the mean and variance
of Y1 .

(c) What is the pmf of Y3?

4. As defined in Exercise 3, let Y2 denote the sample median.
(a) Show that the pmf of Y2 can be expressed as

g(Y2) = 2 
+ (Y2 — 1)(6 —Y2)

27	 36
y 2 = 1,2,...,6.

(b) Use the symmetric pmf in (a) to obtain the first two moments of Y2 .

5. Let X be a Discrete Uniform [1,5] random variable.
(a) Compute the pmf of X; ; n for all i, 1 < i < n, for n = 2 and for

n = 5.
(b) Find the means and variances of Xi , 5 for all i, i = 1 to 5.

6. By using a multinomial argument, show that when X is discrete, and
i < j, the joint pmf of X; ,,, and X 	 f; j : n(x xj), is given by

i -1 n—j j —i -1 j — i —r3 - 1

ri=o r2= 0 r,= o	 .,=o (i — 1 — r 1 )!(1 + r 1 + r3)!(j — i — 1 — r3 — r4 )!
(1 + r2 + r4 )!(n — j — r2 )!

X (F( x i ,))t - 1 -r,{f( X
;
))l+r,+r3(F(

Xj—
) — F(x;)ri-1—r3—r4

Xi (X j)) 
1 +r2+r4(1 

— F(Xj)} n—j—r2 e

EEE E
n!
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when x i < xj. Also show that when x i = xj , it takes the form

r1 =0 r2 -0

i -1 n-1	 Ir ( ^)%r-1-r'lf( ^)1

j-i+l+r^ +r2

lE E 
n. l̀F x•-	 x•	 1— 

( i - 1 — r1)!(j — i + 1 +r1+r2)!(n — j
— r2)!

F 
(

x 
^
•
)

}
n -1 -r2

7. Let X be a Discrete Uniform [1, N] random variable.
(a) Determine µI:2 , Q1:2 and p1,2:2•
(b) Determine variances of X1 : 3 and X3 : 3.

8. Prove Lemma 3.4.1.
[Hint: There are at least two approaches. The first one uses the mono-
tonicity of (1 — u)s-r and the mean value theorem of integral calculus.
The second approach is a statistical one. Note that (3.4.2) is equivalent to
the statement that cov(h 1(V), h 2(V )) is negative where h 1 is increasing
and h 2 is decreasing and V is a (continuous) uniform (a, b) random
variable.]

9. Suppose X is either degenerate or has a two-point distribution. Show
that X1 . „'s form a Markov chain for each of these parent distributions.

10. Suppose S has at least three points in its support. Show that
(a) (3.4.2) holds if x i _ 1 = x i = x; +1•

(b) the inequality in (3.4.2) is reversed if either x i _ 1 < x i = xi+ 1 or

xi-I =xi <x i+1 •

11. Even though the order statistics from a discrete distribution do not form
a Markov chain, conditioned on certain events, they do exhibit the
Markov property.
(a) Show that, conditioned on the event that the observations are dis-

tinct, the sequence of order statistics from a discrete parent form a
Markov sequence.

(b) Can you think of other events E, such that conditioned on E, the
Xi :it's form a Markov chain? 

(Nagaraja, 1986a)

12. Let X have discrete uniform distribution over the first N natural
numbers.
(a) Determine E(W3).
(b) When N = 5, compute the pmf of W3 and W5.
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13. Let X be an integer-valued random variable having the support [a, M.
Then, show that, for w > 0,

b—w n-1 n—r
P(W, = w) E E	 !(	 )!

x=a r=1 s=1 r1 S n— r— S

X [f(x)1 r[f(x + W)] s [F(x + W — 1) — F(x)] n
— r

— ' .

Verify that this expression matches (3.5.3).
(Burr, 1955)

14. When X has a discrete uniform distribution over [a, b], where a and b
are integers, obtain an expression for the pmf of the spacing W , i+ 1  : n

[Hint: Find P(W i+1 = w) for w > 0. P(Wz+1 = 0) is obtained by
complementation.]

15. Let X be a Geometric(p) random variable. Show that for any j,
2 S j < n, X1:n and W1,i:n are independent. Are X2 : n and 14/2 , n

 : n

independent?

16. (a) Compute the pmf of W2 while sampling from a Bin(4, p) population
for the following values of the parameter p: 0.25, 0.50, and 0.75.

(b) Find E(W2 ) and var(W2 ) for each of the three values of p used in
(a).

17. (a) Verify (3.3.10).
(b) When the parent distribution is Geometric(p), show that (3.3.10)

reduces to the following relation:

n	 9"  	 n -^i _r L	 92	 1
Mi.i+I:n = 11(i% — 

( i 1 — gn-i ^ (-1)	 ( r )(1 — gi—r)

 (1 — q"'^ \ 2

(Balakrishnan, 1986)

18. Let X be a nonnegative discrete random variable with support S and
pmf f(x). For x E S, the failure or hazard rate function is defined by
h(x) = P(X = xIX x) = f(x)/{1 — F(x — )). This is analogous to the
absolutely continuous case discussed in Exercise 2.15.
(a) Express the failure rate function of X1:n in terms of h(x).
(b) Show that X1: n is IFR (DFR) if and only if (iff) X is IFR (DFR).

19. This exercise shows that among discrete distributions whose support is
the set of nonnegative integers, the geometric distribution is the only

n!
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distribution for which the failure rate is a constant. This is a simple
characterization of the geometric distribution. A detailed discussion of
the role of order statistics in characterizing the parent cdf F is presented
in Chapter 6.
(a) Let X be a Geometric(p) random variable. Show that its failure

rate, h(x), is a constant.
(b) Suppose X is a nonnegative integer-valued random variable. If h(x)

is a constant, say c (> 0), then show that X has a geometric
distribution with parameter p for some p, 0 < p < 1. How are c and
p related?

20. Suppose the parent distribution has support S = (0, 1, 2, ... ). Show that,
if X1:2 and the event (W2 = 0) are independent, the failure rate function
must be a constant. This, in view of Exercise 19(b), implies the parent
distribution must be geometric. In Section 3.6 we noted the converse,
namely, if we sample from a geometric population, X 1:2 and the event
{W2 = 0} are independent. Hence this independence property character-
izes the geometric distribution in the class of parent distributions with
support S. For sample size n > 2, the proof of the characterization is
harder and may be found in Srivastava (1974).

21. Suppose the population is made up of N distinct units. We draw a
random sample of size n (5 N) without replacement. Let A, denote the
number of population units that do not exceed X,., the ith order
statistic of our sample.
(a) Determine the pmf of A..

(b) Determine E(A 1(A 1 + 1) • • • (A, + r — 1)), r >_ 1.

(c) Use (b) to obtain the mean and the variance of A i .

(d) If the population units are in fact the numbers 1, 2, ... , N, how is A,
related to Xi : „?

r(n + 1)r(i + r)
jlim E( B; N) = 	 r(i)r(n + r + 1)

[Hint: Use Exercise 21(b).]

r z 1.

(Wilks, 1962, pp. 244)

22. Suppose we pick a random sample of size n without replacement from a
discrete uniform distribution over the integers 1, 2, ... , N (n 5 N). Di-
rectly using the joint pmf of X,.,, and Xf: „, determine 0.0: „ when i < j.
[Hint: Find E(X;: ,,) and E{X;: „(N — Xi: „)}.1

23. Let us define B1, N = A ;/N, where A,'s are as defined in Exercise 21.
(a) Show that

 



EXERCISES
	

61

(b) Show that B; N converges in distribution to U; : „; that is, B, N -°-* U  „,

as N — co. (Hint: Use the convergence of the moments.)
(Wilks, 1962, pp. 245)

24. Let X1 , ... , X„ be independent and X; be Geometric(p,), i = 1 to n
where pi 's are possibly distinct.
(a) Determine the distribution of X, : „.
(b) Determine whether X 1: „ and W„ are independent.
(c) Show that there exists a random variable D, possibly degenerate,

such that X, : „ - D as n --* co. Determine possible distributions
for D.
[Hint: Look at the possible limits for P(X 1 : „ >. x)].

 





CHAPTER 4

Order Statistics from some Specific
Distributions

4.1. INTRODUCTION

In the last two chapters, we discussed some basic properties of order
statistics from arbitrary continuous and discrete populations. In this chapter,
we consider some specific distributions (both discrete and continuous) and
study order statistics in more detail. In particular, we consider the Bernoulli,
three-point, binomial, and Poisson distributions in Sections 4.2-4.5, respec-
tively, and discuss the distribution and joint distribution of order statistics
and also the derivation of means, variances, and covariances. In Sections
4.6-4.9 we consider the exponential, uniform, logistic, and normal distribu-
tions, respectively, and establish some interesting distributional results satis-
fied by order statistics. In addition to deriving explicit expressions for the
single and the product moments of order statistics, we further present some
simple recurrence relations satisfied by these quantities. Finally, in Section
4.10 we give a discussion on the computer simulation of order statistics. We
describe how some of the distributional results established earlier in Sections
4.6 and 4.7 could be used to optimize the simulation process.

4.2. BERNOULLI DISTRIBUTION

Let us consider the Bernoulli population with pmf

P(X=1)=	 and P(X=0)=1—^r , 	0<ir <1.

In this case, it is easy to observe that

P(Xi : n = 1) = P(at least n — i + 1 Xr 's are 1)
n

= E 1
I
nr)7rr(1 ion-r

ran—i+1 
\\l 

= .r* (say) (4.2.1)

63
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and

P(X; = 0) = 1 — Tr* .

So, we observe that the ith order statistic in a sample of size n from the
Bernoulli population is also a Bernoulli random variable with probability of
success 1r* as given in (4.2.1), and hence we immediately have

lti:n = 1r* and v;,;:n=iT (1-1T ).	 (4.2.2)

Similarly, we find the joint probability mass function of X, : „ and Xj: „
(15i< j5 n)tobe

P(Xi:n =0, Xj:n =0)=P(Xj:n =0)=1- 1rß,

P(X=:n= 1 ,X;:n= 1 )=P(X;:,,= 1)=

and

P(X;:n = 0, Xj:n = 1) = P(at least n — j + 1 and at most n — iXr 's are 1)

j 	 1r* .	 (4.2.3)

From (4.2.3) and (4.2.2), we immediately obtain

- 
TTi and v; , j: „ = 1r*(1 - 1r*) ,	 1 5 i < j 5 n. (4.2.4)

From the joint pmf of Xi: „ and Xj: „ in (4.2.3), we may also derive the
probability mass function of the (i, j)th quasirange W, j: „ = Xj:n — Xi: „
(15i< j5 n)tobe

P(W j: n =1) = P(Xi:n=O,Xj:n= 1)= irr — irr

and

P(W,• j:n= 0)=P(Xi:n= Xj:n = 0)+P(X;:n= Xj:n = 1 )

= 1 — 1r7 + 1r'. 	 (4.2.5)

We thus observe that the (i, j)th quasirange W, j: „ from the Bernoulli
population is also a Bernoulli random variable with probability of success
1r* — 1r* , and hence

E(W ) =1rj
* 

— irr

and

var(W j: „) _(1r* — 1r* )(1 — 1r* + a*),	 1 5 i < j S n. (4.2.6)
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In particular, we observe that the sample range Wn = Xn :  n — X1 : n from a
Bernoulli population is again a Bernoulli random variable with probability of
success 7r,* — 7ri — 1 — 7r" — (1 — 7r)", and hence

E(W") = 1 — 1r" — (1 — ?i) n

and

var(Wn ) = {7r" + (1 — 70'1 {1 — Tr" — (1 — 7)1	 n >_ 2. (4.2.7)

4.3. THREE-POINT DISTRIBUTION

In this section we shall consider the three-point distribution with support 0
(failure), 1 (waffle), and 2 (success), and with pmf

P( X = 0) = 7r 0 , P( X = 1) = 7r 1 and P( X = 2) = 7r 2 ,

with 7ro +-rr t +7r 2 = 1. (4.3.1)

Proceeding as we did in the last section, we can derive the probability
distribution of Xi:n (1 < i < n). For example, we observe that

P(X = 0) = P(at least i Xr 's are 0)
n

=
	

(1'1
r)^0(1 — 7r0 )

"-r

= 171,n- i + 1 (say),	 (4.3.2)

where 7ro, i is the expression of 7r* in (4.2.1) with 7r replaced by
similarly observe that

P( Xi : n = 2) = P( at least n — i + 1 Xr 's are 2)

=	 E ( r )7;(1-  7r2 ) n -r

r=n -i +1

= 7rZ.i (say) ,

7ra. We

(4.3.3)

where -rr2 i is the expression of 7r* in (4.2.1) with IT replaced by 7 2 . From
(4.3.2) and (4.3.3), we immediately have

r =i

P(Xi:n = 1) =1 — "ö
,n-i +] — 7r2 i .	 (4.3.4)
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Note that, by direct probabilistic arguments, we can also write

P(Xi : n = 1) = P(at least one X, is 1, at most i - 1 Xr's are 0,
and at most n - i X,'s are 2)

= E E P(exactly r X's are 1, exactly s X's are 0,
r s and exactly n - r - s X's are 2)

n min(i- 1,n—r)	 n^= ^'`	 ^` L.^	 L. 	^l"^OTr2)i
r-1 s =max(0,i —r) 

r i Si( n- r - S
(4.3.5)

Thus, we observe that the ith order statistic in a sample of size n from the
three-point distribution in (4.3.1) also has a three-point distribution with
probability of failure irk n_i+1, probability of waffle 1 - irQ n_; + 1 - .i, and
probability of success zra,. From Eqs. (4.3.2)-(4.3.4), we also immediately
obtain

Ni:n = ( 1 — ^O,n—i+1 — 'R2,i) + 2 TrZ,i = 1 — rrÖ.n —il +'R2 i (4.3.6)

and

Q. _ (1 — -rr*	 — 7* i ) + 4-rr* — (1 — ^r*	 + Tr* ) 2t,i:n	 0,n—i+1	 2 ,	 2, i	 0,n — i+1	 2 , i

// *	 *
—

- ^

O,n— i +1 + "if  — \ ^O,n —i +1 — ^2,i) • (4.3.7)

Proceeding similarly, one may derive the joint probability mass function of
Xi,n and Xj : n (1 < i < j < n) and thence an expression for µ,  	 and Qi,; : n

4.4. BINOMIAL DISTRIBUTION

In this section, let us consider the bionomial population with pmf

P(X =x) = ( 1 ) px(1 - p)N-x, 	x= 0,1,..., N,	 (4.4.1)

and cdf

x
F(x) = P(X s x) = E (N)pr(l_p)N -r,

	x = 0,1,..., N. (4.4.2)
r-0

Then, from Eqs. (3.2.1) and (3.2.2) we can write at once the pmf of Xi„
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(1 < i < n) as

fi:n(x) = P(Xi:n = x)

= E(^)[{F(x) }r{1 — F(x) } n
r

r =i

— {F(x — 1)} r (1 — F(x — 1))n 
-

r1, x = 0,1,... , N,

with F(- 1) = 0. Alternatively, from Eq. (3.2.3) we can write

(4.4.3)

fi:n(X) = IF(x)(i, n — i + 1) — I(i, n — i + 1), x = 0,1, ..., N,

where Ia(a, b) is the incomplete beta function defined by

1

	

	-1 dt.at a-1 (1=	 — t) b

(4.4.4)

(4.4.5)la(a, b) f
B(a,b)	 o

We can	 the cdf of Xi : n (1 < i —< n) as

(

write

Fi:n(x) = P(Xi:n <x)

= E (;){F(x)}r {1 — F(x)} n r ,	 x = 0,1 , ..., N.
r =i

(4.4.6)

From (4.4.6) we obtain in particular that

F1:n(x) _ E 0)(F(x)}r{1 — F(x)} n r = 1 — {1 — F(x)) n ,
r=1

x = 0,1, . . . , N, (4.4.7)

and

Fn:n(x) = {F(x)} n ,	 x = 0,1,..., N.	 (4.4.8)

Next, from Eqs. (3.2.6) and (3.2.7) we can write the first two moments of
Xi:n as

and

N- 1

µi :n = E { 1 — Fi:n(x)},	 1 < i < n,
x=o

(4.4.9)

N-1
µi?^n = 2 E x{1 — Fi:n(x)} + µ 	 1 < i n.	 (4.4.10)

x=0
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From Eqs. (4.4.9) and (4.4.10), with the use of Eqs. (4.4.7) and (4.4.8), we
obtain in particular that

N^^
L

—++
1
 r

Ill:n =	 {1 — F( X)} „ ,

x=0

N-1

N-n:n = E [1 — {F(x)}n],
x=0

N-1

µtj?„ = 2 E x(1 — F(x)}n +
x 0

and
N-1

1'1'n
(2)

: n = 2 E x[ 1 — { F(x)}
n 

+ µn:n'
x^0

By making use of the above expressions, Gupta and Panchapakesan (1974)
computed the mean and variance of X1: „ and X„ : „ for various choices of n,
N, and p. For example, in Table 4.4.1 we have presented some of these
values.

We may similarly find the joint cdf of X, „ and X,,,, (1 5 i < j 5 n) as

^,j:n( x ir Xj) = F:n(Xj) = E ( r
){F(xj )}r {1 — F(xj)}n—r ,

r—j

when x ; z xj , (4.4.11)

and when x. < xj ,

Fi,j:n(xi , xj)

	j n —j	 nt

	— E E 	—{r!(n — r — s)!s! 
F(x ; )}r{F(xj) — F(x; )} „—r

—s
{1 F(xj )}s

1
+(1 — sjn) ^ E 	 1( 	n	)i 1 {F(xi)}r

r =j+l s-or n —r — S s .

x {F(xj ) — F(x ; )} „—r
—s

{ 1 — F(xj)}` ,

n n—r

(4.4.12)

where Sj„ is the Kronecker delta. We may then find the joint pmf of X;:„
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Table 4.4.1. Means and Variances of Extreme Order Statistics
for the Binomial Bin(N, p) Population

n=5 n=10

N p 141:nn ll'n:n 61,1:n frn,n:n Ann l'1'n:n 61,1 :n an,n:n

1 0.1 0.0000 0.4095 0.0000 0.2418 0.0000 0.6513 0.0000 0.2271
0.2 0.0003 0.6723 0.0003 0.2203 0.0000 0.8926 0.0000 0.0958
0.3 0.0024 0.8319 0.0024 0.1398 0.0000 0.9718 0.0000 0.0274
0.4 0.0102 0.9222 0.0101 0.0717 0.0001 0.9940 0.0001 0.0060
0.5 0.0312 0.9687 0.0303 0.0303 0.0010 0.9990 0.0010 0.0010

5 0.1 0.0115 1.3188 0.0114 0.4544 0.0001 1.6544 0.0001 0.4202
0.2 0.1386 2.0711 0.1219 0.5895 0.0189 2.4703 0.0185 0.4873
0.3 0.4220 2.7049 0.2911 0.6286 0.1594 3.1222 0.1351 0.4993
0.4 0.7985 3.2634 0.4301 0.4301 0.4615 3.6736 0.2814 0.4595
0.5 1.2388 3.7612 0.5388 0.5388 0.8543 4.1457 0.3791 0.3791

10 0.1 0.1185 2.1550 0.1070 0.7460 0.0137 2.6089 0.0136 0.6478
0.2 0.6649 3.5140 0.4263 1.0281 0.3301 4.0586 0.2391 0.8521
0.3 1.4070 4.7089 0.7090 1.1628 0.9574 5.2929 0.4700 0.9279
0.4 2.2560 5.8014 0.9397 1.1812 1.7317 6.3919 0.6672 0.9104
0.5 3.1886 6.8114 1.1019 1.1019 2.6183 7.3817 0.8186 0.8186

15 0.1 0.3347 2.9116 0.2608 1.0085 0.1001 3.4480 0.0908 0.8699
0.2 1.3214 4.8506 0.7264 1.4494 0.8658 5.5052 0.4626 1.1925
0.3 2.5200 6.5926 1.1332 1.6815 1.9398 7.3026 0.7873 1.3396
0.4 3.8449 8.2110 1.4526 1.7449 3.1838 8.9364 1.0570 1.3514
0.5 5.2702 9.7298 1.6625 1.6625 4.5617 10.4383 1.2512 1.2512

Table adapted from Gupta and Panchapakesan (1974, Ann. Inst. Statist. Math. Suppl. 8,
95-113). Produced with permission from the authors and the Editor, Ann. Inst. Statist. Math.

and Xj , n (1<i<j<_n) as

0,	
/	 /	

xi > xj ,

Fi.j:nl i , xi) - F
(

Xi - 1, x i ),	 xi = xj ,

Fi.j:nl x i^ xj) - Fi.1:nl Xi - 1, xi )

`Fi j:n(Xi, x  - 1) + FiX i - 1, xj - 1), x i < xi .

(4.4.13)

We can then find the product moment p, i , j: n as

j
N
^	 /	

+	
j^

N -1 N
'

I t i.j:n - L.i xlfi,j:nlxi +Xi)	 ^	 Lr Xixjfil:n^xi^ xj) ,

x i =0	 xi=0 xi =x i +1

xj)

 



70 ORDER STATISTICS FROM SOME SPECIFIC DISTRIBUTIONS

N-1

from which we may show that

x1 - 1

11 1,n:n = E=1:n — (1 — 8N1) E E {F(xi) - F(xi) }n '
xi = 1 x; -0

From Eqs. (3.5.2) and (3.5.3), we may similarly proceed to derive the pmf
of the sample range W„ = X„ : „ - X1: obtained earlier by Siotani (1957)
and Siotani and Ozawa (1958).

4.5. POISSON DISTRIBUTION

Let us consider the Poisson population with pmf

and cdf

P( X = x ) = e -.tAx/x! , x=0,1,2,...,	 (4.5.1)

F(x) = P(X 5 x) = e-A E Ar/r!,	 x = 0,1,2,.... (4.5.2)
r=o

From Eqs. (3.2.1)-(3.2.3), we can then write the pmf of Xi: „ (1 S i 5 n)
as

fi:n(x) = P(Xi:n = x)

= E ( r )[{F(x)}r {i - F(x))nr

r=i

-{F(x - 10 1 — F(x - 1) }n rj

= IF^ x^( i, n - i + 1) - IF^x - 1 ^(i, n - i + 1), 	 x = 0, 1, 2, . . . ,

(4.5.3)

where F(-1) = 0 and Ia(a, b) is the incomplete beta function defined in Eq.
(4.4.5). Similarly, we have the cdf of Xi: „ (1 5 i 5 n) as

Fi: „(x) = E ( rri){F(x)}r { 1 - F(x)}„r ,	 x = 0,1,2,... . (4.5.4)
r=t

Further, from Eqs. (3.2.6) and (3.2.7) we have the first two moments of Xi:„
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as

00 

and

µ i: „= Ell — Fi:n (x)},	 1 < i < n,
x=o

00

(4.5.5)

/421n = 2 E x {1 — Fi:n(x)} + fA'i:n;
x =o

which, in particular, yields

1< is n,	 (4.5.6)

µ1:n =

µn:n =

µ
(1 ^ n

E (1 — F(x)} n ,

x =o

E E l — {F(x)}1,
x =0

2 E x(1 — F(x)} n + µi:,,
x= 0

and
CO

µ(n2)n = 2 E x[1 — {F(x)}n1 + µn:n•
x=0

By making use of the above formulas, Melnick (1964, 1980) has computed the
mean and variance of the extreme order statistics for sample size n =
1(1)20(5)50(50)400 and A = 1(1)25. Melnick (1980) also discussed how to
control the error in the computation of these quantities when the infinite
series is truncated at some point. The values of il l  n and IL„,„ are presented
in Table 4.5.1, for example, for A = 5(1)10 and n = 10, 20.

Furthermore, expressions for the joint distribution of order statistics and
the product momentsµ4, i: n can be written similarly to those presented in the
last section for the binomial distribution.

Table 4.5.1. Means of Sample Extremes for the Poisson (A.) Population

n	 A= 5	 A=6	 A=7	 A=8	 A=9	 A=10

	

1.90970	 2.57418	 3.26691	 3.98173	 4.71442	 5.46200
	8.68131	 10.01314	 11.31785	 12.60116	 13.87604	 15.11834
	1.38350	 1.97531	 2.59836	 3.25074	 3.93121	 4.61790
	9.57531	 10.97838	 12.34849	 13.69259	 15.01548	 16.32067

10

20

Table adapted from Melnick (1980, 1. Statist. Comput. Simul. 12, 51-60). Produced with
permission from Gordon and Breach Science Publishers.
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4.6. EXPONENTIAL DISTRIBUTION

In this section, we shall discuss some properties of order statistics from the
standard exponential population with pdf

f(x) = e -x,	 0 5 x < co .	 (4.6.1)

In this case, from Eq. (2.2.3) we have the joint density function of
X1:n, X2:n,•••, Xn:n to be

f1,2....,n:n(x,, x2,..., xn ) = 0Sx,<x2< ••• <xn <no,

(4.6.2)

Now let us consider the transformation

Z 1 = nXI :n ' Z2 = (n - 1 )(X2:n - Xl :n ),..., Zn = Xn:n -

or the equivalent transformation

Xl : n —

Z1
 + X2:n — nl	

Z2+ n1 ,. . ., Xn : n = nl 
+ 

n Z2 1 
+ ... +4.

(4.6.3)

After noting that the Jacobian of this transformation is 1/n! and that

n	 n	 n

E x, = E (n - i + 1 )(x1 - x1-1) = E Zi,

i=1	 i=1 	^ =1

we immediately obtain from (4.6.2) the joint density function of Z 1 , Z2 , . , Zn

to be

fZ, ,...,Z„( z 1 ,. .., Z n) = e -E" I Z',	 0 5 z 1 ,..., Zn < co.	 (4.6.4)

Upon using the factorization theorem, it is clear from (4.6.4) that the
variables Z 1 , Z2 , ... , Z,, are independent and identically distributed standard
exponential random variables. This result, due to Sukhatme (1937), is pre-
sented in the following theorem.

Theorem 4.6.1. Let X1: n 5 X2 : n 5 • • • 5 Xn : n be the order statistics
from the standard exponential population with pdf as in (4.6.1). Then, the
random variables Z 1 , Z2 , ... , Zn , where

Z; = (n - i + 1 )(Xr:n -X; _ l :n ),	 i = 1,2,...,n,
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with X0: „ E 0, are all statistically independent and also have standard
exponential distributions.

Further, from (4.6.3) we have

d E Z,/(n — r + 1),	 i = 1,2, ..., n,	 (4.6.5)
r=1

which simply expresses the ith order statistic in a sample of size n from the
standard exponential distribution as a linear combination of i independent
standard exponential random variables. It is then clear that the exponential
order statistics form an additive Markov chain, as noted by Renyi (1953).

The representation of X, : „ in (4.6.5) will enable us to derive the means,
variances, and covariances of exponential order statistics rather easily (see
Table 4.6.1.). For example, we obtain

= E(X) _ E E(Zr ) /(n — r + 1) = E 1/(n — r + 1),
r 	 r=1

1 < i < n, (4.6.6)

= var(Xi: „) = E var(Zr ) /(n — r + 1) 2 = E 1/(n — r + 1) 2 ,
r=1	 r=1

1 < i < n, (4.6.7)

and

\\ = cov(Xi :n^ Xj:nJ = E var(Zr) /(n — r + 1)
r=1

2

= E 1/(n — r + 1) 2 = Cr; ,i: „,

r =1
for  < i < j < n.	 (4.6.8)

We may similarly derive the higher-order moments of Xi: „, if needed.
Alternatively, by making use of the fact that f(x) = 1 — F(x) (x >_ 0) for

the standard exponential distribution, one can derive recurrence relations for
the computation of single and product moments of all order statistics. These
results, due to Joshi (1978, 1982), are presented in the following two theo-
rems.

Theorem 4.6.2. For the standard exponential distribution, we have for
m = 1,2,...,

	(m) — 	(m -1)	^A '1:n - 
	
N'1:n (4.6.9)
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Table 4.6.1. Means and Variances of Exponential Order Statistics for n up to 10*

n i il; :n Q; , i :n n t ^+i Pi,i:n
1 1 1.000000 1.000000 7 7 2.592857 1.511797
2 1 0.500000 0.250000 8 1 0.125000 0.015625
2 2 1.500000 1.250000 8 2 0.267857 0.036033
3 1 0.333333 0.111111 8 3 0.434524 0.063811
3 2 0.833333 0.361111 8 4 0.634524 0.103811
3 3 1.833333 1.361111 8 5 0.884524 0.166311
4 1 0.250000 0.062500 8 6 1.217857 0.277422
4 2 0.583333 0.173611 8 7 1.717857 0.527422
4 3 1.083333 0.423611 8 8 2.717857 1.527422
4 4 2.083333 1.423611 9 1 0.111111 0.012346
5 1 0.200000 0.040000 9 2 0.236111 0.027971
5 2 0.450000 0.102500 9 3 0.378968 0.048379
5 3 0.783333 0.213611 9 4 0.545635 0.076157
5 4 1.283333 0.463611 9 5 0.745635 0.116157
5 5 2.283333 1.463611 9 6 0.995635 0.178657
6 1 0.166667 0.027778 9 7 1.328968 0.289768
6 2 0.366667 0.067778 9 8 1.828968 0.539768
6 3 0.616667 0.130278 9 9 2.828968 1.539768
6 4 0.950000 0.241389 10 1 0.100000 0.010000
6 5 1.450000 0.491389 10 2 0.211111 0.022346
6 6 2.450000 1.491389 10 3 0.336111 0.037971
7 1 0.142857 0.020408 10 4 0.478968 0.058379
7 2 0.309524 0.048186 10 5 0.645635 0.086157
7 3 0.509524 0.088186 10 6 0.845635 0.126157
7 4 0.759524 0.150686 10 7 1.095635 0.188657
7 5 1.092857 0.261797 10 8 1.428968 0.299768
7 6 1.592857 0.511797 10 9 1.928968 0.549768

10 10 2.928968 1.549768

*Covariances can be obtained by using the fact that o ; , l:n = o;.;; „ (j >

and

Nimn = Nim 1: n - t + n µ'imn 11 ,
25 iS n.	 (4.6.10)

Proof. For 1 5 i 5 n and m = 1,2,..., let us consider

! n 
Eexr-l(F(xMill - F(x )}n-if(x• ) dx •,

Et;:n	 (i - 1)!(n - i) ! ;	 ^ 
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which, upon using the fact that f(x i) = 1 — F(x i) for the standard exponen-
tial distribution, can be rewritten as

n!
—m-1n

(i — 1)!(n — i)! o 
x'" -1 {F(x,)} i -1

 {1 — F(x	
i+l

i )}	 dxi.

(4.6.11)

Upon integrating the right-hand side of (4.6.11) by parts, treating x" -  for
integration and the rest of the integrand for differentiation, we obtain for
1<— i <—n and m=1,2, ... ,

(m — 1) — 	
(i — 1)!(n — i)!m

X — i + 1 -x F x•	 1 - F x	 x dx[(n 	)fo ;"{ ( ^)}` ' {	 ( J}" f( ,)	 ,

—(i — 1) fo°°xm{F(x i )} i 2{1 — F(xi)}n —i+l
f(xi) dX iJ. (4.6.12)

The relation in (4.6.9) follows immediately from (4.6.12) upon setting i = 1.
Further, by splitting the first integral on the right-hand side of (4.6.12) into
two and combining one of them with the second integral, we get

N
(m-1)
i: n

= 	n
► 	W

Il n ('
p
 xi" {F(x i ) } i 1 {1 — F(xi)}"`.f(xi) dxi(i — 1)!(n — i)!m 

Co
—(i — 1) fo x;"{F(x i )}i2{1 — F(xi)}" f(xi) dx i .

The relation in (4.6.10) follows upon simplifying the above equation.
0

Theorem 4.6.3. For the standard exponential distribution,

and

i +1: n = N (i2.)n
1

—
 iNi:n+ 1 5 i <_ n- 1,	 (4.6.13)

n!

1

Ai.j:n — Ni,j—l:n + n — j + 1 Ni : n^ 1< i <j< n, j—iZ 2. (4.6.14)
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Proof. To establish these two relations, we shall first of all write, for
15i< jS n,

= E(Xi:nX9,n)

n!

(i- 1)!(j-i- 1)!(n -j)!

x 	ff 	x ; {F(x ; )} ` - ' {F(xj) - F(x ; )}j-i -1

o sx ; <x; <oo
n j

x -F(xj)} f(x i)f(xj )dxj dx ;

n! 	m
f 

x . {F(x . )}i- 1 I(
xi)f(xi) ^i+(i - 1)!( j - i -1) !(n - .l ) ! o	 l

(4.6.15)

where, upon using the fact that f(xj) = 1 - F(xj), we have

1(x ; ) = f °°{F(xj) - F(x ; )}' -i - 1 {1 - F(xj )}" ' + ` dx1 (4.6.16)
xi

Integrating the right-hand side of (4.6.16) by parts, treating dx j for integra-
tion and the rest of the integrand for differentiation, we obtain, when
j = i + 1,

1(x i ) = (n - i) f e*x1{1 - F(xj )}
n -i - 1 f(x

j ) dxj - x i {1 - F(x i )}" - ,

x;

(4.6.17)

and when j - i z 2

I(xi) = (n - j + 1) f xj{F(xj) - F(x; )}' -i 1 {1 - F(xj )}" -'f(xj)dxj
x ;

-(j - i - 1) f xj{F(xj) - F(x i ) }i-i -Z{ 1 - F(xj)}" -j+1 f(x
j)dxj .x 

(4.6.18)

The relations in (4.6.13) and (4.6.14) follow readily when we substitute the
expressions of 1(x i) in Eqs. (4.6.17) and (4.6.18), respectively, into Eq.
(4.6.15) and simplifying the resulting equations. 0
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The recurrence relations presented in Theorems 4.6.2 and 4.6.3 are easy
to implement through a simple computer program in order to evaluate the
first m single moments and the product moments of all order statistics at
least up to moderate sample sizes. One has to be aware, however, of the
possible accumulation of rounding error that would arise when this recursive
computation is implemented for large sample sizes. Results similar to those
in Theorems 4.6.2 and 4.6.3 are available for a number of distributions;
interested readers may refer to the review article by Balakrishnan, Malik, and
Ahmed (1988). It should be noted that Theorem 4.6.3 can also be easily
proved by using Theorem 4.6.1.

Furthermore, due to the relationship between the geometric and the
exponential distributions, there also exists a close relationship between the
dependence structure of order statistics from the geometric distribution and
those from the exponential distribution. To this end, we may first of all note
that when Y is Exp(0), i.e., with pdf

1
f(y ) = -0 e -Y/0, y>_0, 0 >0,

then X = [Y], the integer part of Y, is distributed as Geometric(p), where
p = 1 — e -1/8 ; also, the random variables [Y] and (Y) = Y — [Y] = Y — X,
the fractional part of Y, are statistically independent. Then, if Y 1 , 112 , ... , Yn

are independent Exp(0) random variables and Y denotes the ith order
statistic from this random sample of size n, we easily observe from the
representation in (4.6.5) that

	d r	d
Yi:n 	Yr/(n — r + 1)	 E Yl:n-r+1+

	r =1	 r=1
(4.6.19)

where Y1: n _r+ 1'S are independent. A parallel result for the geometric order
statistics, due to Steutel and Thiemann (1989), is presented in the following
theorem.

Theorem 4.6.4. Let Xi : n denote the ith order statistic from a random
sample of size n from Geometric(p) distribution. Then,

AC" d Lr X1:n-r+1 + 
l 

E (Yr/(n — r + 1))I,	 (4.6.20)
L r=1	 r=1

where the K's are independent Exp(0) random variables with 0 =
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(—log(1 — p))- '; and all the random variables on the right-hand side of
(4.6.20) are independent.

Proof. First of all, we may note that X i 	[Y1 /m]. Now

n [Y]i:n ^ [Y:n]
i

d E Yr/(n—r+1)
r •1

(4.6.21)

from (4.6.19). Observing then that

Yr —r+1) = E[yr/(n— r +1)]+	 1))1tri « 12 r=1 	 1.••1

_ E [lrr	
r

/(n—r+1)]+ [ (/(n— r + 1)^
r= 1 	r=1

we immediately derive from Eq. (4.6.21) that

d	 (
Xi:n — E xi:„,,, + j''`

Lr (\Yr/ln — r + 1))1,
r =1	 r= 1

which is precisely the relation presented in Eq. (4.6.20). The independence of
all the random variables on the right hand side of (4.6.20) follows readily
from the independence of the variables [Y] and (Y) [since Y is Exp(9)].

0

4.7. UNIFORM DISTRIBUTION

In Chapter 2, we have already seen that the ith order statistic from a random
sample of size n from the Uniform(0, 1) population has a Beta(i, n — i + 1)
distribution. Similarly, we have also seen that the ith and jth order statistics
jointly have a Bivariate Beta(i, j — i, n — j + 1) distribution. These distribu-
tional results were in fact used in Sections 2.2 and 2.3 to derive the means,
variances, and covariances of uniform order statistics.

In this section, we shall discuss some additional interesting properties of
order statistics from the Uniform(0, 1) population.

Theorem 4.7.1. For the Uniform(0, 1) distribution, the random variables
V1 = Ui : n/ U : n and V2= U1, 1 5 i <1 5 n, are statistically independent,
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with V1 and V2 having Beta(i, j — i) and Beta( j, n — j + 1) distributions,
respectively.

Proof. From Eq. (2.3.13), we have the joint density function of U : n and
U1 . n (1<i<j< n)tobe

{	 / 
	n!

Ji.j:nl u ie uj) _ (i — 1)!(j — i — 1)!(n — 

j)! u-i(uj — U,) 1
— r -r

(1 — uj ) "-1 '

0<u ; <uj <1.

Now upon making the transformation

V, = Ui:n/U:n and V2 = Ujn

and noting that the Jacobian of this transformation is v 2 , we derive the joint
density function of V1 and V2 to be

1!
fv,,vZ(vI, v2) _

( i - 1)!(j - i - 1)!
 ur'(1 -

n!
X 

( f — 1)!(n — !
vi -

2
1 (1—

0<v, <0, 0<v 2 <1. (4.7.1)

From Eq. (4.7.1) it is clear that the random variables V, and V2 are
statistically independent, and also that they are distributed as Beta(i, j — i)
and Beta(j, n — j + 1), respectively. ❑

Proceeding similarly, one can prove the following theorem.

Theorem 4.7.2. For the Uniform(0, 1) distribution, the random variables

U,:n	 U.
V,	

UZ : n ^	
V2	

U6:n lt n

n ,
 and V, = U.

(1 < i, < i 2 < • • < i, < n) are all statistically independent, having the
distributions Beta(i„ i 2 — i 1 ), Beta(i 2 , i 3 — i 2 ), ... , Beta(i,_ 1 , i , — i,_ 1 ) and
Beta(i,, n — i, + 1), respectively.

 



v*= Ul:n
I	 ,

U2:n

Tin*	n:n

vz = 
( U2:n )2

n-1

V* =n—I	
(Un-1:n)

U3:n Un n
and

(4.7.4)
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From Theorem 4.7.2, we immediately obtain

Ti m^	 rr m,+m 2 + ••• +miE 11 U,•., n = E	 V
P=1 '	 j -1

1
= T-r E(1/m^ +m2+ +m^\

jj	 j	 J
j=1

—	 n! ^ (ij + m 1 + m 2 + • • • +mj — 1)!

(n + ^^ eim)! j =I (ii + m 1 + m 2 + ... -Fmj-i — 1 )!
(4.7.2)

where m o = 0. From Eq. (4.7.2), we obtain in particular that for 1 5 i 1 < i 2

< i 3 <i4 5 n

E(UrmnUim nUim nUm n)

n!(m 1 + i 1 — 1)!(m 1 + m 2 + i 2 — 1)!(m 1 + m 2 + m 3 + i3 — 1)!
(m 1 + m 2 + m 3 + m 4 + 14 — 1)!

(i 1 — 1)!(m 1 + i 2 — 1)!(m 1 + m 2 + i3 — 1)!
(m 1 + m 2 + m 3 + 14 — 1)!(n + m 1 + m2 + m 3 + m 4 )!

(4.7.3)

The first four cumulants and cross-cumulants of uniform order statistics
obtained from (4.7.3) may be used to develop some approximations for the
corresponding quantities of order statistics from an arbitrary continuous
distribution F(x). This method of approximation, due to David and Johnson
(1954), based on the relation in (2.4.2), is discussed in great detail in
Section 5.5.

The following theorem, due to Malmquist (1950), presents an interesting
distributional property satisfied by the uniform order statistics by making use
of the property of exponential order statistics given in Theorem 4.6.1.

Theorem 4.73. For the Uniform(0, 1) distribution, the random variables

are all independent Uniform(0,1) random variables.

Proof. Let X1: n < X2: n < • • • < Xn: n denote the order statistics from
the standard exponential distribution. Then upon making use of the facts that
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X = — log U has a standard exponential distribution and that — log u is a
monotonically decreasing function in u, we immediately have

1 < i < n.	 (4.7.5)Xi:n = — log Un- i +I:n,

Equation (4.7.5) yields

i d*	 U:n	 e
V =  

	e -xn-,:n
^+I:n

e -1'n-,+1 (4.7.6)= e -itxn—,+I :n -xn—i:n

upon using Theorem 4.6.1, where Y's are independent standard exponential
random variables. The independence of the random variables VI*, V2*, ... , Vn*
then readily follows. The fact that these are Uniform(0, 1) random variables
follows from (4.7.6) when we use the result that a -Y, 's are uniformly dis-
tributed. ❑

An alternate simple way of proving Theorem 4.7.3 is to set / = n, i 1 = 1,
i 2 = 2, ... , and i i = n in Theorem 4.7.2 and then to directly use the result
that (Beta(i,1))' is distributed as Uniform(0, 1).

4.8. LOGISTIC DISTRIBUTION

In this section, we shall consider the standard logistic population with pdf

and cdf

f(x) = e -X/(1 + e -x) 2 ,

F(x) = 1/(1 + e-x),

—cc < x < cc	 (4.8.1)

—oo < x < ao	 (4.8.2)

and discuss some properties of order statistics.
By noting that F-1(u) = log[u/(1 — u)], we may write the moment-gener-

ating function of Xi : n from Eq. (2.2.2) as

= n! 	l t u' -1 (1 — u ) n-r dumi lt) = E(e`x, :n)
(i- 1)!(n — i ) ! JOl ( 1 

u

u 1

n!

(i- 1)!(n—
i)! B(i+t,n— i —t+ 1)

r(i + t)r(n - i +1- t)
1s i < n,	 (4.8.3)

r(i)r(n — i + 1)

where r(•) is the complete gamma function. From (4.8.3), we obtain the
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cumulant-generating function of X. as

Ki:n(t) = log Mi:n(t)

= log r(i + t) + log I'(n — i +1 — t)— log r(i)—log(n — i + 1),

1 s i s n. (4.8.4)

From (4.8.4), we immediately

dm
	//Ki

•
	 = d̂mKi:nit)

dm

obtain the mth

dm

cumulant

+ t)

of Xi , „ to be

t -0
— log r(i

t - 0	 dt m

+ d^m log r(n — i +1 —t) -°
=
	 —1)( 

i) + ( -1) m tP (m -I)( n — i + 1), (4.8.5)

where ‘11(°)(z) = 41(z) = (d/dz)log 1'(z) = I"(z)/r(z) is the digamma
function, and ‘11(1)(z), *(2)(z), ... are the successive derivatives of 'P(z),
referred to as polygamma functions. From (4.8.5), we obtain in particular that

N i:n = 14 1.n = T(i) — 'tIr(n — i + 1)	 (4.8.6)

and

Cri n = Ki?n = aIP (1)(i) + tP (1)(n — i + 1),	 (4.8.7)

where 'It' and 'i'" are the digamma and trigamma functions, respectively.
These functions have been computed rather extensively by Davis (1935) and
Abramowitz and Stegun (1965); computer programs for the computation of
these two functions have also been prepared by Bernardo (1976) and
Schneider (1978).

Proceeding similarly, Gupta and Shah (1965) have derived an explicit
expression for the covariance Qi , ;: „ in terms of digamma and trigamma
functions.

From Eqs. (4.8.1) and (4.8.2), it is easy to note that

f(x) = F(x) {1 — F(x)},	 — 00 <x < 00.	 (4.8.8)

The relation in (4.8.8) has been utilized by Shah (1966, 1970) to establish
some simple recurrence relations satisfied by the single and the product
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moments of order statistics. These results are presented in the following two
theorems.

Theorem 4.8.1. For the standard logistic population with pdf and cdf as
in (4.8.1) and (4.8.2), we have for m = 1, 2, ... ,

m
"(m)	 "(m) EAlmn — — (m -1)

µl:n +

and

µi+1:n+1 = µimn _1_ m µ(
mn 1) +

where µ;°., = 1 for 1 < i < n.

n >— 1,	 (4.8.9)

1 < i < n,	 (4.8.10)

Proof. From Eq. (2.2.2), upon using the relation in (4.8.8), we can write

(m-1)
^ ) I: n

j^

= nJ 41-IF(xi) {1 — F(x 1 )}n dx 1 .

Integrating this by parts, treating xm - ' for integration and the rest of the
integrand for differentiation, we get

µ(m - 1) I= 
m

 In f xrF(x 1 ){1 — F(x1)}n-I f(xl) dr 1

a
—1:{1 
 x!" 

— F(x1)} nf(x1) ^1,

= 
m 

Ln f mx; { 1 — F(x1)}n 1 f(x1) ^1
-  

^
—(n + 1)1 G x^ {1 — F(x 1 )} nf(x 1 ) dr 1 :° (4.8.11)

The relation in (4.8.9) is derived upon simplifying Eq. (4.8.11).
Next, by using the relation in (4.8.8), let us write from Eq. (2.2.2)

n! J 	i	 n -i +1
µin 1 ) —

	J x m -1 lF(x i )} {1 — F(x i )} 	dYi
( i — 1)!(n — i)!

1 <i < n.

Integrating this by parts, treating x"' - ' for integration and the rest of the

 



and

(2)
µ i,i+l:n +1	 n— i+	1 ';,i+l:n — n+ 1 µi+ 1:n + 1

n +1 f	 i
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integrand for differentiation, we get

n!
„(m-1)

(i — 1)!(n — i)!m

Xn —i+ 1	 x• F x• l — F x•	 x• dx•(	 )1°' ;`{ ( ')}`{	 ( ,)}n f( J	 ,

^

—if xm{F(xi)}' {1 — F(xi)}n ' +l
f(x;) ch i

00

(i — 1)!(n — i)!m (
(n + 1)1 c°)f xn`{F(x i )} 1 {1 — F(x i )}n —`f(x i ) dx i

—ii : x• F x•	 1 — F x•	 x• dx•	 (4.8.12)

	The relation in (4.8.10) is derived upon simplifying Eq. (4.8.12). 	 0

Theorem 4.8.2. For the standard logistic population with pdf and cdf as
in (4.8.1) and (4.8.2), we have

n +1
µi,l:n+1	 n— j+ 21 µ i, l :n

n —j+ 2	 1

n+ 1 µ ' • / —I:n +1 	n — j+ 1 µi:n 

1Si<jS n, j —i z 2. (4.8.14)

Proof. From the joint density function of X. and Xl: „ in Eq. (2.3.2), we
may write, for 1 5 i < j 5 n,

µi:n = E(Xi:nXj n)

n! 	0,

!	 1 1 	!	 l l	 I Wxi{F(xi)) %
I I(x;)f(xi) ^i,

(' — )•(j—•—	 n — j)!
)•(

(4.8.15)
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where

1(x 1 ) = f c°{F(xj ) — F(xi)}1
- i - 1 {1 —

 F(x1)}n
-j +1F(x1)

 ^1x i

upon using the relation in (4.8.8). By writing

1(xi) = flF(xj)  — F( xi)}j -i- 1 {1 — F(xj)} n
-
j+ 1 dx1

x;

— f°'

	

	 j i 1	 j +2
{F(xj ) — F(x 1 )}	 {1 — F(xj )}

n
	dx)

x,

and then integrating by parts, we obtain for j = i + 1

1(xi) = (n — i) f xj {1 — F(xj)}n -i- I f(x1) dxj

—(n — i + 1) f x {1 — F(xj )}n f(xj ) dxj
x ;

— x iF(x i ) { 1 — F(x i)}",	 (4.8.16)

and for j—i> 2

1(x i ) = [(n — j + 1) f xj {F(xj ) — F(x 1 )}' - ' -1
{ 1 — F(xj)}" -' f(xj ) dxj

xi

	l—(j — i — 1)fx xj{F(xj ) — F(x 1 )}' - ` -2{1 — F(xj)}" )+1 f(x
j ) ^J1

—[(n  — j + 2) f xj{F(xj) — F(x i )}' i-1 (1 — F(xj )}" -' +1 f(xj) dxj 
x i

—(j — i — 1) .f xj {F(xj ) — F(x i )}j- 2(1 — F(.5)}
n-

j+2f(xj ) dxj

1.
(4.8.17)

The recurrence relations in (4.8.13) and (4.8.14) follow upon substituting the
expressions of 1(x 1) in (4.8.16) and (4.8.17), respectively, into Eq. (4.8.15) and
then simplifying the resulting equations. ❑

By starting with the values of 11 1:1 = E(X) = 0 and piTi = E(X 2 ) =
-rr 2/3, for example, Theorem 4.8.1 will enable us to compute the means and
variances of all order statistics for sample size 2, 3, ... in a simple recursive
manner. Similarly, by starting with the value of /1 1 , 2 , 2  = E(X I X2) = 0 and
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Table 4.8.1. Means of Logistic Order Statistics for n up to 10*

n i n n i µran

1 1 0.000000 7 7 2.450000
2 2 1.000000 8 5 0.250000
3 2 0.000000 8 6 0.783333
3 3 1.500000 8 7 1.450000
4 3 0.500000 8 8 2.592857
4 4 1.833333 9 5 0.000000
5 3 0.000000 9 6 0.450000
5 4 0.833333 9 7 0.950000
5 5 2.083333 9 8 1.592857
6 4 0.333333 9 9 2.717857
6 5 1.083333 10 6 0.200000
6 6 2.283333 10 7 0.616667
7 4 0.000000 10 8 1.092857
7 5 0.583333 10 9 1.717857
7 6 1.283333 10 10 2.828968

* Missing values can be found by the symmetry relation 	 =
- t1•n-i+l:n•
Table adapted from Gupta and Shah (1965, Ann. Math. Statist. 36,
907-920). Produced with permission of the Institute of Mathematical
Statistics.

using the fact that IL = µ t, n - r+z : n + t (due to the symmetry of the
standard logistic distribution), Theorem 4.8.2 will enable us to compute the
product moments and hence the covariances of all order statistics for sample
size n = 2, 3, ... in a simple recursive way. For example, we have presented
the values of means, variances and covariances in Tables 4.8.1 and 4.8.2 for
sample sizes up to 10. Similar tables have been prepared by Balakrishnan and
Malik (1992) for sample sizes up to 50.

Results similar to those presented in Theorems 4.8.1 and 4.8.2 can be
proved for truncated forms of the logistic distribution as well. For these and
some other developments concerning order statistics from the logistic distri-
bution, interested readers may refer to the recently prepared volume by
Balakrishnan (1992).

4.9. NORMAL DISTRIBUTION

In this section we shall discuss some important properties of order statistics
from the normal population. First of all, let us consider the order statistics
Xi: ,, (1 5i 5 n) from the standard normal distribution with pdf

 1 e -0(x)-
2/2 ,

2zr	
-00 < x < 00.	 (4.9.1)
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Table 4.8.2. Variances and Covariances of Logistic Order Statistics for n up to 10*

I °t,in n t J ^i,l:n I r̂,1:n n i j

1 1 1 3.289868 6 2 5 0.314798 8 2 6 0.234796 9 4 6 0.305223
2 1 1 2.289868 6 3 3 0.678757 8 2 7 0.199582 9 5 5 0.442646
2 1 2 1.000000 6 3 4 0.502298 8 3 3 0.576257 10 1 1 1.750100
3 1 1 2.039868 7 1 1 1.798479 8 3 4 0.422171 10 1 2 0.698437
3 1 2 0.855066 7 1 2 0.723663 8 3 5 0.333326 10 1 3 0.430922
3 1 3 0.539868 7 1 3 0.448112 8 3 6 0.275479 10 1 4 0.310962
3 2 2 1.289868 7 1 4 0.324031 8 4 4 0.505146 10 1 5 0.243115
4 1 1 1.928757 7 1 5 0.253667 8 4 5 0.401428 10 1 6 0.199531
4 1 2 0.793465 7 1 6 0.208385 9 1 1 1.762446 10 1 7 0.169184
4 1 3 0.496403 7 1 7 0.176813 9 1 2 0.704838 10 1 8 0.146843
4 1 4 0.361111 7 2 2 0.826257 9 1 3 0.435270 10 1 9 0.129711
4 2 2 1.039868 7 2 3 0.518475 9 1 4 0.314261 10 1 10 0.116157
4 2 3 0.670264 7 2 4 0.377749 9 1 5 0.245775 10 2 2 0.762446
5 1 1 1.866257 7 2 5 0.297171 9 1 6 0.201761 10 2 3 0.474405
5 1 2 0.759642 7 2 6 0.244966 9 1 7 0.171104 10 2 4 0.343956
5 1 3 0.472872 7 3 3 0.616257 9 1 8 0.148528 10 2 5 0.269720
5 1 4 0.342976 7 3 4 0.453287 9 1 9 0.131213 10 2 6 0.221830
5 1 5 0.269035 7 3 5 0.358864 9 2 2 0.778071 10 2 7 0.188382
5 2 2 0.928757 7 4 4 0.567646 9 2 3 0.485139 10 2 8 0.163699
5 2 3 0.590527 8 1 1 1.778071 9 2 4 0.352157 10 2 9 0.144736
5 2 4 0.433653 8 1 2 0.712975 9 2 5 0.276365 10 3 3 0.528071
5 3 3 0.789868 8 1 3 0.440811 9 2 6 0.227421 10 3 4 0.384963
6 1 1 1.826257 8 1 4 0.318472 9 2 7 0.193208 10 3 5 0.302949
6 1 2 0.738319 8 1 5 0.249174 9 2 8 0.167946 10 3 6 0.249782
6 1 3 0.458165 8 1 6 0.204612 9 3 3 0.548479 10 3 7 0.212513
6 1 4 0.331705 8 1 7 0.173560 9 3 4 0.400684 10 3 8 0.184934
6 1 5 0.259882 8 1 8 0.150686 9 3 5 0.315762 10 4 4 0.437368
6 1 6 0.213611 8 2 2 0.798479 9 3 6 0.260607 10 4 5 0.345659
6 2 2 0.866257 8 2 3 0.499214 9 3 7 0.221890 10 4 6 0.285865
6 2 3 0.546413 8 2 4 0.362941 9 4 4 0.465146 10 4 7 0.243769
6 2 4 0.399331 8 2 5 0.285120 9 4 5 0.368453 10 5 5 0.402646

10 5 6 0.334261

*Missing values can be found by the symmetry relation Q;, ,, = a,, _j + 1, n-i+i:n•

Table adapted from Balakrishnan and Malak (1992) and produced with permission of the authors.

In this case, expected values of the sample range Xn : n - X   	 were com-
puted for n 5 1000 by Tippett as early as 1925; similarly, Ruben (1954)
computed the first 10 moments of X n  n for n 5 50 and Harter (1961, 1970)
tabulated the means of order statistics for sample sizes up to 400. Tietjen,
Kahaner, and Beckman (1977) computed the means, variances, and covari-
ances of all order statistics for sample sizes up to 50. This list (by no means
complete) gives us an idea about the extensive computations that have been
carried out concerning order statistics from the standard normal distribution.
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Derivation of explicit expressions for µ; Qi i , and of; ,, is somewhat
involved even in the case of small sample sizes. For the purpose of illustra-
tion, we follow below the approach of Bose and Gupta (1959) to derive exact
explicit expressions for the means of order statistics in sample sizes up to 5.
To this end, let us denote

In(a) = I^ {^(ax)}"^e -x 2 dx,	 n = 0,1,2,....	 (4.9.2).

From (4.9.2), we immediately observe that 10(a) = 1. Next, by starting with

( 1) eI ^{ ^(ax)
2  ^

-x2dx= 0, m = 0,1,2,... (4.9.3)

(since the integrand is an odd function of x), we get

2m+1	 ; 2m + 1 1E
 (-1) (	 i	 ) 2i 12m+1-i(a) = 0, 	m = 0,1,2,...,

i -o

which immediately yields the recurrence relation

12m+1( a) =

2m+1E	 1( -1 ) i+1 2m + 1 
 1 	) 2, I2m + 1-il a )+

i =I
m = 0,1,2,....

(4.9.4)

For example, we obtain from (4.9.4) that

11(a) = i1o(a) = z	 (4.9.5)

and

13(a) = 1I2(a) —
 411(a) + i/o(a) = 1I2(a) — ä.	 (4.9.6)

For determining I2(a), let us consider from (4.9.2)

	dl2(a) ^ °° 
^	 ^ax xe- (1^2)x212+a2)

da	 r ^^ ( )

_ _ 	Y^• 	0D d	 tx2^2xa2 +2)
	1r(a2 + 2) ^ m^(ax)

 dx 
{e - 	}

a
 •

(4.9.7)
r(a2 +

 2)(a2 + 1) 1/2 . 
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Upon solving the differential equation in (4.9.7), we obtain

1
12(a) _ — tan -1 (a 2 + 1)1/2

which, together with Eq. (4.9.6), also gives

13(a)	 27r tan -1 (a 2 + 1) 1/2
 — 4 •

Now let us consider

µ2:2 = 2J W x4'(x)d(x) dx,

(4.9.8)

(4.9.9)

which, upon using the property that (d/dx)4(x) = —x4(x) and integrating
by parts, can be written as

1	 2	1	 1
11 2:2 = 2f 0 2 (x) dx = f ^^e -X dx = ✓- 1o(a) = J— = 0 .564190 .

Due to the symmetry of the standard normal distribution, we immediately
have 111:2 = - 11 2:2 = -0.564190.

Next let us consider

l113:3 = 3I x(^(x)) 2 0(x) dx,^

which, upon using the property that (d/dx)4(x) = —x¢(x) and integrating
by parts, can be written as

3
113:3 = 6f (13(x)(1) 2 (x) dx = 

^ 

f coo(x) J--e-X 2 dx = 	 I1(1)

1.5
=	 - 0.846284.

Due to the symmetry of the standard normal distribution, we then have
11 1:3' — 11 3:3 = —0.846284 and µ Z:3 =0.

Let us now consider

114:4 = 4 .1 x(qcs(x)) 3 0(x) dx,
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which can be written as

6
µ4:4 = 12 f 

m

{^(x)} 2¢2(x) dx = r  f .{fi(x) } 2 -xe -"Z dx = ^- 12(1)

6
—	 tan-1	 = 1.029375.

ir>r

Similarly, we can write

:x
{c1)(x)} 2[1µ3:4 = 12f 	 — ^(x))^(x)dx

= 24f  ^(x)¢2( x) dx — 36f f  {^(x)} 2 ^2(x) dx
„	 m

12	 18_ 
viTr 

 I1(1) —

 r
 12(1)

6	 18
— tan -1 {2- = 0.297011.
^ ^^

Due to the symmetry of the standard normal distribution, we then have
µ 1: a = — µa : a = —1.029375 and µ2:4 = — µ 3 : a = — 0.297011.

A similar argument will yield

10	 103	 1
µs:s = ^ 13( 1 ) = 

^ 
{ 2n tan -1 ^ — 4 = 1.162964,

30	 40
µ4:5 = T-77.--12(1)  - ^ 13( 1) = 0.495019,

and then µ 1:5 = — µ5:5 = —1.162964, µ2:5 = — 144:5 = —0.495019, and
µ 3 : 5 = 0 due to the symmetry of the standard normal distribution.

Explicit expressions can also be derived for the product moments in small
sample sizes by proceeding in an analogous manner. However, we refrain
from that discussion here and refer the interested readers to Godwin (1949),
David (1981), and Balakrishnan and Cohen (1991).

The values of µ; : „ and o,,.,, are presented in Tables 4.9.1 and 4.9.2,
respectively, for n up to 10. As mentioned earlier, Tietjen, Kahaner, and
Beckman (1977) provided these values for sample sizes up to 50.

For the normal distribution, we can establish some interesting properties
of order statistics by using Basu's (1955) theorem which states that "a
complete sufficient statistic for the parameter 0 is independently distributed of
any statistic whose distribution does not depend upon 0."
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Table 4.9.1. Means of Normal Order Statistics for n up to 10*

n i l-ii:n n i

1 1 0.000000 7 7 1.35 2178
2 2 0.564190 8 5 0.152514
3 2 0.000000 8 6 0.472822
3 3 0.846284 8 7 0.852225
4 3 0.297011 8 8 1.423600
4 4 1.029375 9 5 0.000000
5 3 0.000000 9 6 0.274526
5 4 0.495019 9 7 0.571971
5 5 1.162964 9 8 0.932297
6 4 0.201547 9 9 1.485013
6 5 0.641755 10 6 0.122668
6 6 1.267206 10 7 0.375765
7 4 0.000000 10 8 0.656059
7 5 0.352707 10 9 1.001357
7 6 0.757374 10 10 1.538753

* Missing values can be found by the symmetry relation µ;:,, =

- 14n-i+1:n•
Table adapted from Teichroew (1956, Ann. Math. Statist. 27, 410-426).
Produced with permission of the Institute of Mathematical Statistics.

Theorem 4.9.1. For the standard normal distribution, we have

L µi.l':n = E
=t	 j=t

(4.9.10)

for i = 1, 2, ... , n; in other words, the sum of the elements in a row or
column of the product-moment matrix or the covariance matrix of standard
normal order statistics is 1 for any sample size n.

Proof. Let Y1 , Y2 , ... , Yn be a random sample of size n from normal
n (1,1) population, and Yt : n - Y . n - • < Yn : n be the corresponding
order statistics. Then, upon using the facts that Y = (1/n)E7= IY is a com-
plete sufficient statistic for the parameter and that the distribution of
Y, : n - Y does not depend on µ, we immediately have the result that
Y : n - Y and Y are statistically independent upon invoking Basu's theorem.
As a result, we have cov(Y : ,, - Y , Y) = 0, which readily implies

E ^i j:n = 1 >

j =t
for i = 1, 2, ... , n,

n	 n

since var(?) = 1/n and cov(Y :n , Y) = ( 1/0E7= t°i.j:n. From this result, we
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Table 4.9.2. Variances and Covariances of Normal Order Statistics for n up to 10°

n i j n t s,/:n n i j i,j:n n t 1 °i,j:n

1 1 1 1.000000 6 2 5 0.105905 8 2 6 0.078722 9 4 6 0.112667
2 1 1 0.681690 6 3 3 0.246213 8 2 7 0.063247 9 5 5 0.166101
2 1 2 0.318310 6 3 4 0.183273 8 3 3 0.200769 10 1 1 0.344344
3 1 1 0.559467 7 1 1 0.391918 8 3 4 0.152358 10 1 2 0.171263
3 1 2 0.275664 7 1 2 0.196199 8 3 5 0.120964 10 1 3 0.116259
3 1 3 0.164868 7 1 3 0.132116 8 3 6 0.097817 10 1 4 0.088249
3 2 2 0.448671 7 1 4 0.098487 8 4 4 0.187186 10 1 5 0.070741
4 1 1 0.491715 7 1 5 0.076560 8 4 5 0.149175 10 1 6 0.058399
4 1 2 0.245593 7 1 6 0.059919 9 1 1 0.357353 10 1 7 0.048921
4 1 3 0.158008 7 1 7 0.044802 9 1 2 0.178143 10 1 8 0.041084
4 1 4 0.104684 7 2 2 0.256733 9 1 3 0.120745 10 1 9 0.034041
4 2 2 0.360455 7 2 3 0.174483 9 1 4 0.091307 10 1 10 0.026699
4 2 3 0.235944 7 2 4 0.130730 9 1 5 0.072742 10 2 2 0.214524
5 1 1 0.447534 7 2 5 0.101955 9 1 6 0.059483 10 2 3 0.146623
5 1 2 0.224331 7 2 6 0.079981 9 1 7 0.049076 10 2 4 0.111702
5 1 3 0.148148 7 3 3 0.219722 9 1 8 0.040094 10 2 5 0.089743
5 1 4 0.105772 7 3 4 0.165560 9 1 9 0.031055 10 2 6 0.074200
5 1 5 0.074215 7 3 5 0.129605 9 2 2 0.225697 10 2 7 0.062228
5 2 2 0.311519 7 4 4 0.210447 9 2 3 0.154116 10 2 8 0.052307
5 2 3 0.208435 8 1 1 0.372897 9 2 4 0.117006 10 2 9 0.043371
5 2 4 0.149943 8 1 2 0.186307 9 2 5 0.093448 10 3 3 0.175003
5 3 3 0.286834 8 1 3 0.125966 9 2 6 0.076546 10 3 4 0.133802
6 1 1 0.415927 8 1 4 0.094723 9 2 7 0.063235 10 3 5 0.107745
6 1 2 0.208503 8 1 5 0.074765 9 2 8 0.051715 10 3 6 0.089225
6 1 3 0.139435 8 1 6 0.060208 9 3 3 0.186383 10 3 7 0.074918
6 1 4 0.102429 8 1 7 0.048299 9 3 4 0.142078 10 3 8 0.063033
6 1 5 0.077364 8 1 8 0.036835 9 3 5 0.113768 10 4 4 0.157939
6 1 6 0.056341 8 2 2 0.239401 9 3 6 0.093363 10 4 5 0.127509
6 2 2 0.279578 8 2 3 0.163196 9 3 7 0.077235 10 4 6 0.105786
6 2 3 0.188986 8 2 4 0.123263 9 4 4 0.170559 10 4 7 0.088946
6 2 4 0.139664 8 2 5 0.097565 9 4 5 0.136991 10 5 5 0.151054

10 5 6 0.125599

* Missing values can be found by the symmetry relation in j;,, = °n-;+1.n-i+1:n

Table adapted from Sarhan and Greenberg (1956, Ann. Math. Staus:. 27, 427-451). Produced with
permission of the Institute of Mathematical Statistics.

also obtain that

^-+	
n	 n

L µi,j:n - E	 E N'j:n = 1,
j=1	 j=1	 j =1

since 4_ 1 µj:n = nµ1:1 = 0. Hence, the theorem. 	 0
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REMARK 1. Theorem 4.9.1 may alternatively be proved by using the
relation in Exercise 14 of Chapter 5 with g(x) = x and noting that
f(x)/f(x) = (//(x)/cp(x) = —x for the standard normal population.

Theorem 4.9.2. Let Yl ; n < 172: n < • 	< Yn : n denote the order statis-
tics from a normal N(µ, o 2 ) population. Then the statistic

with E7.1ci = 0 and S 2 being the sample variance, is independent of both Y
and S.

Proof. The result follows immediately from Basu's theorem once we note
that (Y, S) is jointly sufficient and complete for (p., o) and that the distribu-
tion of the statistic Tn does not depend on or o.

REMARK 2. Theorem 4.9.2 helps us in the computation of the moments
of Tn (see Exercise 17). It should be mentioned that several tests for possible
outliers in normal samples are based on statistics of the form Tn . The statistic
(Yn : n — -1)/S  discussed in Section 7.9 is one such example.

As mentioned already in Remark 1, the property that ¢'(x) = —x¢(x) for
the standard normal distribution can also be exploited to derive some results
for the normal order statistics. For example, two such results derived are
presented in the following two theorems due to Govindarajulu (1963a) and
Joshi and Balakrishnan (1981), respectively.

Theorem 4.9.3. For the standard normal distribution, we have

µ,z)n = 1 + 
!l - 1)!(n — i)! L` (-

i

(	 •̂  
l ) 

t + ' µl,z:i+^,
l	 i= o	 J

Proof. For 1 < i < n, let us consider

1 < i—<n.

(4.9.12)

n!
(2) —  	 x?{1(x'))`-1{1 — (D ( x•)}n _ '4.(x i ) dxNi:n 	 (i — 1)! ( n — i)! _^ ,	 ,	 ,	 ,

l 	(4.9.13)

Upon writing x.4(x i) as —41(x i) in Eq. (4.9.13) and then integrating by
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parts, we immediately obtain

n!
µ(Z)n = 1 +

 (i — 1)!(n — i)!

x (i — 1) El (-1)'(n 
j )j°° x i{o(x i ) }i +j -2

02(x i ) dx ;
j -o

n —i -1
 //	

m
+(n — i) ^ l -1)j+ 1 ( n

 — 
j — 1 ) /' xx;{^(x;) }1+j -1

0
2 (xr) dx!

j-o	 J

(4.9.14)

Now, since f x;4(x;) dx; = — J °4«x;) dx; = 4(x1), we have

	dz^^x//	 //z^	 x^^ ^ x \ // x.	 dx^J ^x r { l r)}r^2 x1 r) d =	 x

	

r	 JJ	 r ^{ ( r)J ' ^l r)^(x ^)	 ^	 r
— oo <Xr <xi < o0

=-11,r+1,.+2,.+2/((r + 1)( r + 2) )

/11,2:r +2/(( r + 1)(r + 2)).

The last equality follows due to the symmetry of the standard normal
distribution. The relation in (4.9.12) is derived upon making use of the above
expression for the two integrals on the right-hand side of (4.9.14) and
simplifying the resulting equation. ❑

Corollary. By setting i = n in (4.9.12), we obtain for the standard normal
distribution that

„(2)	 „(2)
 = ft

(2)n 	1 + N'1.2:n• (4.9.15)

REMARK 3. The relations in (4.9.10) and (4.9.15) have been successfully
used by Davis and Stephens (1977, 1978) to obtain improved approximation
for the variance-covariance matrix of standard normal order statistics.

Theorem 4.9.4. For the standard normal distribution, we have

n	 n 

Lµi,j:n = 1 + 1 5 i s n,	 (4.9.16)

and
n	 n 

L
[^ 

i2'i, j :n —	 j:— E µ^2}n 	(n	 i),	 15iSn - 1, (4.9.17)
j—i +1 	j—i+1

with E,c o, ;:n = 0 for j z 1.
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4.10. COMPUTER SIMULATION OF ORDER STATISTICS

In this section, we will discuss some methods of simulating order statistics
from a distribution F(x). First of all, it should be mentioned that a straight-
forward way of simulating order statistics is to generate a pseudorandom
sample from the distribution F(x) and then sort the sample through an
efficient algorithm like quick-sort. This general method (being time-consum-
ing and expensive) may be avoided in many instances by making use of some
of the distributional properties established in preceding sections.

For example, if we wish to generate the complete sample (x 1: n, X2: n , ... ,
X n:n) or even a Type II censored sample (x :n , x 2: n , .., x r: n) from the
standard exponential distribution, we may use Theorem 4.6.1 and avoid
sorting altogether. This may be done simply by generating a pseudorandom
sample y 1 , y 2 , ... , yr from the standard exponential distribution first, and
then setting

xi:n=	 Ys/(n - s+ 1 ),	 i = 1,2,...,r.
s= 1

(4.10.1)

If we wish to generate order statistics from the Uniform(0, 1) distribution,
we may use Theorems 4.7.1-4.7.3 and avoid sorting once again. For example,
if we need only the ith order statistic u, : n , it may simply be generated as a
pseudorandom observation from Beta(i, n - i + 1) distribution. If, in partic-
ular, the largest observation u n : n is required, it may be generated as v 1/n,
where v 1 is a pseudorandom observation from the Uniform(0, 1) distribution.
This approach, as noted by Schucany (1972), can be used efficiently to
produce some extreme observations or even a complete sample (u 1i n ,
U2 i n , ... , U n: n ). For example, after generating three pseudorandom Uniform
(0, 1) observations v 1 , v 2 , and v 3 , we may use Theorem 4.7.3 to produce three
largest uniform order statistics from a sample of size n by setting

U	 = U I /n U	 = vnvl/(-1 )n
n:n	 1	 ,	 n —l:n	 1l/

	
2	 , U n-2:n = v 1 /12

nvl/( n -1)vl
3
/(n - 2).

(4.10.2)

This method is referred to in the literature as the descending method.
Lurie and Hartley (1972) provided a similar algorithm which generates the
uniform order statistics in an ascending order starting from the smallest
order statistic, and this method is aptly called the ascending method. How-
ever, it should be mentioned here that the descending method has been
found to be slightly faster than the ascending method by Lurie and Mason
(1973) through an empirical comparison.

Instead, if we require only the smallest and largest uniform order statistics
from a sample of size n, they may be produced from two pseudorandom
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Uniform (0, 1) observations v 1 and v 2 with the use of Theorem 4.7.1 and
setting

un:n = 	and ul :n = v1 /n ( 1 ` 4/0
-1)).	 (4.10.3)

We may note here that this is a combination of the ascending and descending
methods.

Suppose some central uniform order statistics, say only (u1. „, ui+ 1: n+ • • •

uj : „), are required; we may simulate these by first generating u ; : „ as a
pseudorandom observation from Beta( j, n — j + 1) distribution and then
producing the remaining order statistics through the descending method.
This simulation procedure due to Ramberg and Tadikamalla (1978), has been
extended further by Horn and Schlipf (1986).

Yet another interesting method of generating uniform order statistics is
due to Lurie and Hartley (1972). This method makes use of the fact that if
Xl , X2 , ... , X,, + 1 are independent standard exponential random variables,
then

X1	 X2 	X„
(4.10.4)rn+1	 '	 n+	 ' '• '	 n+1E,_ ilX,	 '

are distributed as U1: „, U2: „ — Ul : „, ... , U„  „ — U„ _ I : „. Now, after generat-
ing n + 1 pseudorandom Uniform (0, 1) observations v 1 , v2 , ..., v„ +1 and
setting x ; = — log v; , we may then produce the uniform order statistics u ; : „
as

E;_ 1 log v,

Ui:n —	 +; log v, '	 I ' 
1,2,..., n.	 (4.10.5)

Note that this method has fewer steps to perform than the descending
method, but needs one extra Uniform(0, 1) observation.

The just-described methods of simulating uniform order statistics may also
be used easily to generate order statistics from any known distribution F(x)
for which F -1(•) is relatively easy to compute. Due to the relation in (2.4.2),
we may simply obtain the order statistics x i  „ , x2 : „, . . . , x71:11 from the
required distribution F(•) by setting

xi:n = F'-1(ui)+	 i = 1,2,...,n.	 (4.10.6)

For example, if we seek the order statistics x 1: „, x2: .. , X: „ to come fromn
the standard logistic population with cdf F(x) = 1/(1 + e - `) and inverse cdf
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F-1(u) = log[u/(1 — u)], we will simply set

xi:n = logl 	u"

 1, 	i = 1,2,..., n.	 (4.10.7)
1 — u,,,,

We refer the interested readers to the books by Kennedy and Gentle
(1980) and Devroye (1986) for a more detailed treatment of this topic.

EXERCISES

1. For the Bernoulli population considered in Section 4.2, find the distri-
bution of (Xi: ,, + Xi .,,). Find also the distribution of the sample me-
dian In .

2. Derive the probability mass function of the (i, j)th quasirange Wi J:n =
XJ: n — Xi : n , 1 < i < j < n, for the three-point distribution discussed in
Section 4.3. Deduce the distribution of the sample range Wn = Xn n —

Xl , n .

3. Let Y be Exp(8) with 1/0 = —log(1 — p). Show then that X = [Y], the
integer part of Y, is geometrically distributed with parameter p. Show
that X and Y — X are statistically independent. Prove further that
Xi : n ° [Y : n ] by showing that their distribution functions are the same.

4. Consider the right-truncated exponential population with pdf

1
.f(x) = e -X ,	 0 <x <P 1 ,

= 0,	 otherwise,

where 1 — P (0 < P < 1) is the proportion of truncation on the right of
the standard exponential distribution and P 1 = — log(1 — P). Then, by
proceeding along the lines of Theorem 4.6.2, show that for m = 1, 2, ... ,

(a)

(b)

non) = n	 cm	 1)	

(1m;P) lL(IP?l_I;:n

=	 N :n-1 +µ(mn 
1)	

(

n> 2.

 P P )
f'1imn -1^

2 < i < n — 1.

(c)
1on)

 	 P µnm^ l:n-1 +	 t1 mm n 1^ P ) Pm,( 1
n >- 2.

P

(Joshi, 1978)

 



(a) An-1,n:n = µ'n-
c2>

 l:n + Nn- l : n

(1 — P )

P
— n nz2.
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5. For the right-truncated exponential distribution considered in Exercise 4,
by proceeding along the lines of Theorem 4.6.3 prove that

(b) I20+ 1 :n = 1.1•(i2:)n

+ n 1 i (	 — n1 1 ; ) i,i+i:n_iP {I l^i:n	 l  	 —

15 iS n-2.

(c) Il i , i :n =

+ 	 1n	+ 1 {i:n  — 1 P \

15i<j5 n -1, j —iz 2.

(d) Ni , n :n = Ni,n

r
— l:n + µi:n

+ 1 P P^ {P1F+i:n -I

15i5n -2.

(Joshi, 1982)

6. Derive exact explicit expressions for the first two single moments and
also the product moments of order statistics from the right-truncated
exponential distribution considered in Exercise 4.

(Saleh, Scott, and Junkins, 1975)

7. Consider the doubly truncated exponential distribution with pdf

1
	f(x) P	  Q e -x, 	Q1 5 x 5 P,,

	= 0,	 otherwise,

where Q and 1 — P (0 < Q < P < 1) are the proportions of truncation
on the left and right of the standard exponential distribution, respec-
tively, and Q 1 = — log(1 — Q) and P1 = — log(1 — P). Then, by denoting
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Q2 = (1 — Q)/(P — Q) and P2 = (1 — P)/(P — Q), generalize the re-
sults in Exercise 4 by proving that for m = 1, 2, ... ,

(a)	 Nlmn m m - 1) — P (m )= Q2Q +1	 7,12 1:,(1"n	 2N- 1:n-11 n>>-2.

m

(b)
(m)	 ( ) 	 (m — 1)	 (m )

	

/^i:n — Q 2 N
m

i — l :n-1 + n ^'1 i : n	 — P2 /li: n-1 e	 2 < i < n — 1.

m
(m)	 ()	 _ m-	 m

(c) Nn:n = Q2Nmn-1:n-1 + n P

(
n :

1)
n — P2 P 1 ,	 n > 2.

(Joshi, 1979a)

8. For the doubly truncated exponential distribution considered in Exercise
7, show that for 2 < i < n and m = 1, 2, ... ,

f l imn — I^im 1: n ( i n 1 ) m E (1 - Q 2 )n
- rB(i ' r — i + 1)E.c;'"r 1)

r =i

+1	
n - i +l

{Pm	
^

( — Q2)	 1 — N
(m)	 }

and

i —t (m	 mN(m)
n — N i—

(m)
 l:n + (i — 1) Q2 (f

)

'11:n —i+l — Q1 {

-m ^ - r

	

	 - )Q2 B(r — 1,n — i + 2)µ(r_mt:
1 
n -i +r ,

r=2

where B(• , • ) is the beta function.
(Balakrishnan and Joshi, 1984)

9. For the doubly truncated exponential distribution considered in Exercise
7, prove that

(2)	 +	 — nP {P	 N-(2)	 }An-1,n:n — Nn —l:n	 N'n—t:n	 2 l^n -1:n-1 — n -1:n - 1 )

n >>- 2.

1 (2) + 
n	 • t	 — nP {	 (2)	

}1^Ni,i+l:n ` Ni:n	 Ni:n	 2 ui,i+l:n —I — E 1 i:n —I 

1<i<n- 2.
1

(c)lli,j:n — i,j-1:n + n — j + 1 [ N• i :n-	 nP2{µi,j:n -1

(a)

(b)

i<i<j—<n- 1,j —i >- 2.
µi,n:n = µ'i,n -1:n + j2'i:n — nP2(Plµi:n- 1

1< i< n-2.
(Balakrishnan and Joshi, 1984)

(d)
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10. Prove Theorem 4.7.2 by following the line of proof given for Theorem
4.7.1.

11. For the standard logistic population considered in Section 4.8, derive an
explicit expression for the product moment µ i , J; " (1 s i < j s n) as

j	 ^2> + E E(- 1)r1 r-1) ; (j—i— r+ s)
1-1 r-1

r=i s=I

j-i-1 	1
XB(S, n - r + 1 )1.1,jts-r:n+s-r + (it!) E

 (_ 1) r(n — i)
r
	

i+ rr=0

X[—IP(1)(n -j+1)+{ 0P(n-j+1) -''(n-i-r+1))

x {APO -i-r)-Y1(n-j+1))].

(Gupta and Shah, 1965; Shah, 1966; Balakrishnan, 1992)

12. Consider the doubly truncated logistic population with pdf

1	 e-x

f(x) - P- Q ( 1 + e -x) 2 '	 (2 ' � x � P"

= 0,	 otherwise,

where Q and 1 - P (0 < Q < P < 1) are, respectively, the proportions
of truncation on the left and right of the standard logistic distribution,
and Q 1 = log[Q/(1 - Q)] and P1 = log[P/(1 - P)]. Then, by denoting
Q2 = Q(1 - Q)/(P - Q) and P2 = P(1 - P)/(P - Q) and proceeding
along the lines of Theorem 4.8.1, prove that for m = 1, 2, .. .

(a) µ1m2 = Ql + p 1 
Q 

[PZ{PM - On}

+(2P - 1)(141 - On ) - mµi".'i- 1>]•
1

+ (1 - 2Q) {Pi - µi7i} - mµ(ri 1)].

(c) 1471 +1 = QI + p 
1 

Q 
I PZ{µj7n -1 - Qm}

+(2P - 1 ) {µi7i - Qi`} - µim„ 11 ,

(b) µzmz = Pi P _ Q 	[Q2{ Pi —QM

nz 2.

 



EI'n +1:n+1
c 	

[ mi4;1) — n pm	 (m)
n(2P — 1 )

P 2t 1 — EI n — I:n-1 )
n+1

(g)
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(d) N(2:3 — E^lm3 + P 3 Q ^ P2{P
m
 ihn)

	+ 2P —	 1 JJ (m ) 	(m ) ) — m 	•	J2 	tE^2:2 — E^1:2	 2 E^ 2: 2

(e) N'2mn +1 — E^Imn +1 + P -}	 Q [ n 

P2

 1 {µ2mn -1 — N Imn-1)

+ 2P — 1 ( (m)	 (m)t 	m 	(m -1)

J
	n 	 E 1 z:n — l ^l:nJ	 n(n — 1) I'1' z: n	 1

n >>- 3.

(m) 	— n + 1 r	 m	 (m- 1)(f) Eli+l:n+1 	i(2P — 1) n — i + 1 µ "n

nP2 	{ (m) 	(m)	
)n — i + 1 Eli:n -1 — E^'i -1: n - 1

1
{(n + 1)( P + Q — 1)

—i(2P — 1)}4m2 + 1 + (P + Q — 1 )14m )I:n I +

2< i<<— n-1.

n+1

1

n + 1
{(n + 1)(P + Q — 1)

—n(2P — 1)} ii,(: )„,_ + (P + Q — 1)µ( )̂l:nl,

n>>-2.

(Balakrishnan and Kocherlakota, 1986)

13. For the doubly truncated logistic distribution considered in Exercise 12,
by proceeding along the lines of Theorem 4.8.2 establish the analogous
recurrence relations for the product moments µi , j : n .

(Balakrishnan and Kocherlakota, 1986)

14. Derive exact explicit expressions for the first two single moments and
also the product moments of order statistics from the doubly truncated
logistic distribution considered in Exercise 12.

(Tarter, 1966)
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15. Prove Theorem 4.9.1 by using the result given in Exercise 14 of
Chapter 5.

16. Prove Theorem 4.9.4.
(Joshi and Balakrishnan, 1981)

17. Let X1: n 5 X2,„ 5	 5 Xn , n be the order statistics from the stan-
dard normal distribution, and Xk be the average of the k largest order
statistics given by

1	 n
Xk = k E Xi:n

i=n—k+1

Then, by using Theorem 4.9.4 show that

_	 1	 n	 k - 1
E(Xk)= 2 E (2i — 2n + 2k —

k i =n—k+1

Define the kth selection differential or reach statistic as

1	 n	 1 jn̂
Dk =Xk — Xn = k ^Xi:n —  La'=n +1

	 n 

Show then that

E(Dk ) = E(Xk) and E(Dk) = var(Xk ) + {E(Xk )} 2 — — ,

and hence

1
var(Dk ) = var(X* ) — —

n
.

For testing the presence of outliers in normal samples, Murphy (1951)
proposed the internally studentized version of the selection differential as

Tk = kDk/S,

where S 2 is the sample variance (refer to Sections 7.9 and 8.6 for a brief
discussion). By making use of Theorem 4.9.2, show that for m = 1, 2, ... ,

k n` [(n — 1)/21"1/2 11(n — 1)/2] 
E(Tr)

I'[( n-1+m)/2]	 E(Dk) •

k

 



and

f l
on ) — —r(p) L.+ iljr hm P)/r ,

rn
n >>- 2,

m	 P -1

r=0
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18. For the Cauchy population with pdf

prove that

1
f(x) = 	ir(1 +x 2 ) ' —00 < x < oo ,

(2) _ n 
((P•i:n —	 : n-1 3< i <n-2,

and more generally

_	 _
µ,mn 	rr(m — 1) `µ ^mn_ ̂ l µim l In — 1} — Nimn 2) ^ m + 1 < i < n — m.

(Barnett, 1966)

19. For the gamma population with pdf

1
f(x) = 

r(P) e
-xxP-1,	 x > 0, p = 1,2,3,...,

show that µ;r",), exists for m > —p by showing that E(Xm) exists for all
m > — p. Prove then that

m	 P-1

^	 P)	 ^	µimn — Nim )l:n - 1 + n r(P) ^ Nir nm /r. ,	 2 < i < n.

(Joshi, 1979b)

20. Let X1, X2
, ... , Xn+1 be n + 1 i.i.d. standard exponential random vari-

ables. Then, prove that the variables

X1 	X2	 Xn
V1 	n+1 ' V2 — E72.11Xi	

Vn — n+l >^ia1 Xi 	Ei=1Xi	 ^Xi

r=0
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are jointly distributed exactly as

U1:n , U2:n — Ul , " , Un:n — Un-I:n ,

where U. „'s are the order statistics from the Uniform(0, 1) distribution.
(Lurie and Hartley, 1972)

21. Suppose we are interested in simulating the central n — 2i + 2 order
statistics from the Uniform(0, 1) population. Then, justify that it can be
done by the following steps:
1. Generate Un-i+l  as a Beta(n — i + 1, 1) observation.
2. Given Un-i+l:n = un—i+1:n, generate U as un-i+1:nV, where V is a

Beta(i, n — 2i + 1) observation.
3. Given Ui:n = u i: n and Un-i+ l :n = un—i+1:n , generate a permutation

of (4+1: n) • ' • , Un—i : n
} as a random sample of size n — 2i from the

Unif0rm(ui : n, un -i+ 1: n) distribution.
4. Arrange the subsample generated in (3) in increasing order.

(Horn and Schlipf, 1986)

22. Instead, suppose we are interested in simulating the i largest and
smallest order statistics from the Uniform(0, 1) population. Then, justify
that it can be done by the following steps:
1. Generate Un _ i + 1: n as a Beta(n - i + 1, i) observation.
2. Given Un-i+l :n — un—i+ l:n, generate Ili : n as un_i+1 :nV, where V is a

Beta(i, n — 2i + 1) observation.
3. Given U   = u.. n and Un _ i + I : n = u n _i+ 1: n, generate permutations of

(111:n1 ... , U _ 1: n) and {Un _i +2 : n, ... , U,,,} as random samples of size
i — 1 from Uniform (0, u i :n ) and Uniform(un_i+1:n, 1) distributions,
respectively.

4. Arrange the two subsamples generated in (3) in increasing order.
(Horn and Schlipf, 1986)

23. With the help of the algorithms in Exercises 21 and 22, explain how you
will simulate (i) the central n — 2i + 2 order statistics and (ii) the i
largest and smallest order statistics, respectively, from the Laplace or
double exponential population with pdf

f(x) = '-e-ixi,	 —oo <x < oo.z

24. For the half logistic population with pdf

f(x) = 2e -x/(1 + e -x) 2 ,	 0 5 x < co,
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by proceeding along the lines of Theorem 4.8.1 prove that for m =
1,2,...

(a)
m

=2 µ^".`n—n µjmn l ) ,	 n> 1.

(m)	 =
(n + 1)m (m-1)	 n — 1 (m)

µ'2:n +1 —	
n	

N'1: n	 2 µ'1:n+17

(m-1) 	n + 1 
(m)

Eli+
(m)

 t:n +1 
_1[(n + 1)m

n— i + l µ" " +	 2 ili —I:n

(b)

(c)

illmn + l

n >- 1.

n — 2i + 1
2	 µ'imn +1 7 2 < i < n.

(Balakrishnan, 1985)

25. For the half logistic distribution considered in Exercise 24, by proceeding
along the lines of Theorem 4.8.2 prove further that

2(n + 1)	
(2)(a)	 ili , i+l:n +1 = ili:

(2)	 +

n +1	 n — i + 1 {Eli,i+1:n — µ i:n n
1
 ii

:n}7

1 < i < n — 1.

(b) µ'2,3:n+1 — 
,A2) ((	 n

+ (n + 1 ) ( µ2:n — 2i47n-1}7 n >>- 2.

(2)
Eli +l,i +2:n+1 — E'l'i+2:n+1

n + 1
f	 (2)	 11

+ i(i + 1) 2Eli +l:n + n ( µi—li:n -1 — ili:n—t117

2< i<n -1.
Eli,j:n + 1 — ili,j- 1 : n+1

2(n	 1) r	 1	 1
+ n —j + 2 l ili,j:n — Eli,i -1:n	 n — + 1 ili:n 7

1<i<j<n, j —i>- 2.

/	 n
(e) µ2.i +1:n+1 = µ'3,j+l:n+I + (n + 1){µj:n — 2il l,j- 1:n-1 }7

3 <j<n.

(`) 	Eli+2,j+1:n+1

n +1
+ l(l + 1) 

[2µi."

(c)

(d)

2<i<j<n,j —i > 2.

(Balakrishnan, 1985)
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26. By starting with the values of µl ;1 = E(X) = log 4, µßl ? I = E(X 2) =
v. 2/3, and z1 22 = µ  : 1 = (log 4)2, employ the results in Exercises 24
and 25 to compute the means, variances, and covariances of order
statistics from the half logistic distribution for sample sizes up to 10.

27. Let X1 , X2 , ... , X" be i.i.d. Uniform(0, 1) variables, and Xn: n =
max(XI , X2 , ... , Xn) and X,*; n = X11". Then, show that

/	 *	 n - 1
(a) P(Xn:n S x,Xn:n ^ y) = x y n

= X" ,

n
(b) P(Xn:n S XL ) -" 2n — 1 •

x > y"

xsy", 0<x, y<1.

Realize that the largest order statistic in a sample of size n from
Uniform(0, 1) population can be generated as either xn ; n or x.,, defined
above.

(Nagaraja, 1979)

28. Prove the relations in Theorem 4.6.3 directly by using the independence
of the exponential spacings established in Theorem 4.6.1.

 



CHAPTER 5

Moment Relations, Bounds, and
Approximations

5.1. INTRODUCTION

In the last chapter we derived some recurrence relations satisfied by the
single and the product moments of order statistics from some specific
populations like the exponential, normal, and the logistic. These relations
were derived by making use of the basic differential equation satisfied by the
population distribution. In this chapter, we first establish some identities and
recurrence relations satisfied by the moments of order statistics from any
arbitrary population. We then derive some universal bounds for the moments
and some simple and useful functions of moments of order statistics, and also
describe a method of approximating these quantities.

In Section 5.2 we first give the basic formulas of the single and the product
moments of order statistics. By using these formulas we derive in Section 5.3
identities and recurrence relations satisfied by the single and the product
moments of order statistics. We present a theorem which gives the minimum
number of single and product moments to be computed in a sample of size n
for the evaluation of all the means, variances, and covariances of order
statistics for any arbitrary distribution. We present similar results for the case
when the population distribution is symmetric. In Section 5.4 we derive some
universal bounds for the expected value of an order statistic and of the
difference of two order statistics. We also present improved bounds for these
quantities when the population distribution is symmetric. Finally, in Section
5.5 we develop some series approximations for the moments of order statis-
tics and present the formulas in particular for the means, variances, and
covariances of order statistics.
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5.2. BASIC FORMULAS

Let X1 , X2 , ... , Xn be a random sample of size n from an absolutely
continuous population with pdf f(x) and cdf F(x), and let X1: " 5 X2;n 5
• • • 5 Xn : n be the corresponding order statistics. From the pdf of Xi : n in
(2.2.2), we then have, for 1 5 i 5 n and m = 1, 2, ... ,

µimn =E(Ximn) =fx mfi:n(x) dx

(i — 1) ! (n	 f cox1F(x)} i -1 {1 — F(x)}" -if(x) dx. (5.2.1)

As mentioned in Chapter 2, we will denote 1.41,),, by µi :  for convenience.
From the first two moments, we can determine the variance of Xj: n by

Q•	 =o(ZI = var(Xr•. n =)	 (2) — i4 :n ,	 1 5 i 5 n.	 (5.2.2)r,i:n	 r.n	 .	 µi:n

Similarly, from the joint density function of X i : n and Xj . n in (2.3.2), we
have, for 1 5 i < j 5 n and m i , In;  = 1, 2, ... ,

f I i n')— E(XmnXmn)

— ff 	 mx"i 'x; 'f;,;:n(xi , xj) dxi dx;

- 00 <x ; <xj < co

n!

(i — 1)!(j — i — 1)!(n — j)!

m. ",.	 }J -i -I
x	 f f	 x i ^xj ^{F(x i )}

i -1
 {F(xj ) — F(x i )

- m <x i <xj < co

n j
x{1 — F(xj)} f(x i ) f(xj ) dx i dxj .

Once again, for convenience we will use µ i, j : n instead of µ; l jl ;. The
covariance of Xi ; n and Xj : n may then be determined by

= coV(Xi:n , Xj:n) — µi.j:n µi:nµj:n'	 1 5 i < j 5 n. (5.2.4)

The formulas in (5.2.1) and (5.2.3) will enable one to derive exact explicit
expressions for the single and the product moments of order statistics,
respectively, in many cases. Also, in situations where it is not possible to
derive such explicit expressions for the moments, the formulas in (5.2.1) and
(5.2.3) can be used to compute the necessary moments by employing some
numerical methods of integration.

(5.2.3)

 



(i- 1)!(n —i)!lo

1<i<n, m= 1,2,..., (5.2.8)

n! 	j
{F -1 (u) J a U i-1 (1 — u)n-i du,
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The expressions for the single and the product moments of order statistics
in Eqs. (5.2.1) and (5.2.3) can be easily modified to the case when the
population distribution is discrete and written as

µ,"`,), = E(Ximn) — 	L X mfi:n(X),	 1 < i 5n, m = 1,2,...,
L I SxSLZ

(5.2.5)

and

im:n  — E(XimnXmn) = EE
L i <x ; Sxi -<L z

m, 
m^f	 ( r )^X XJ i.l:n Xi XJ

1 < i < j 5n, m i , m) = 1, 2, ... , (5.2.6)

where [L I , L2 ] is the support of the discrete population distribution; in
Eqs. (5.2.5) and (5.2.6), fi : n(x) and fi ) ,(x„  xj) are the pmf of X, . n and the
joint pmf of Xi : n and Xj : n , respectively, as given in Chapter 3.

Now, by defining the inverse cumulative distribution function of the
population as

F -1 (u) =sup(x:F(x) 5u),	 0<u <1, 	 (5.2.7)

and by using the relation in (2.4.2), we can unify the expressions of the single
and the product moments of order statistics and write them as

m
µi:n = E('Yi:n)

and
n (m ; , mi )

.l: n = E ( X,mn Xmn )

n!

(i — 1)!(j — i — 1)!(n — j)!

x	 ff	 {F -1 (u i )} {F -1 (u ) )}
mim ;

	u -1 (u) — u
 j -i -1

0 <u i <ui < I

x(1 — u 1 )n-' du i du i ,	 15i  < j 5n, m i , m j = 1, 2, ... .

(5.2.9)

We shall use the expressions of the single and the product moments in (5.2.8)
and (5.2.9) in subsequent sections to derive some identities, recurrence
relations, and bounds for these moments, which then will hold for any
arbitrary population.
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53. SOME IDENTITIES AND RECURRENCE RELATIONS

In this section we establish some basic identities and recurrence relations
satisfied by the single moments, the product moments, and the covariances of
order statistics. These results, in addition to providing some simple checks to
test the accuracy of the computation of moments of order statistics, can
reduce the amount of direct computation of these moments of order statis-
tics, which is highly desirable in cases where these quantities have to be
determined by numerical procedures.

From the identities

and

n	 n

^

mXi n — AT,
i=1	 i =1

m >— 1,	 (5.3.1)

n n	 n	 n'^E E XinnXj n = E EXim'X mi, 	 mä, mj z 1,	 (5.3.2)
i=1 1=1 	i 	 j=1

upon taking expectation on both sides, we derive the identities

and

r nenn = nE(Xm) = nnlnl,
ist

m >— 1,	 (5.3.3)

^n+ n

L E µ;m"n') = nE(Xm,+m,) + n ( n — 1)E(Xm;)E(Xmj)

i =Ij= 1

= n (m;+mi)
l	 ( n )nl+ n	 — 1 cmi

:lE61:1
) cmi),
	 ^'m, mI > 1. (5.3.4)

nl 	 —

From the identities in (5.3.3) and (5.3.4), we obtain in particular that

En = nE(X) =nnl:l,
i=1

E
 ni?)n  nE( X 2 ) = nµ(12 1,

i=1

n n

E E ni,i:n = 111421+ n(n — 1 )14:1,
f =1j=1

(5.3.5)

(5.3.6)

(5.3.7)

 



E	 E µi,j:n = (2)/'1'1:1 — (2)µl,2:2 • (5.3.11)
n-1 n

i =1
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and as a result

n-1 n	 n n
^' 	̀ ^ ` 

	E
	

(n2L	 L.^ ^Ai, j :n = 1 	L.^ ^A i,j:n 	 ^L.r 1.42:)n = 	111:1. (5.3.8)
i = 1 j =i +1	 i =1 j=1	 i =1

Also,

(m^,mZ) + (m2,m1) = 2E XmiEXm2	 (m^) (mz)
N 1,2:2	 µ1,2:2	 (	 ) (	 ) = 2 N1:1Ni:l ,

which, for the case when m 1 = m 2 = 1, gives

11 1,2:2 — A21 :1•

By combining (5.3.8) and (5.3.10), we obtain the identity

ml, m2 >— 1,
(5.3.9)

(5.3.10)

Furthermore, from the identities in (5.3.5) and (5.3.7), we get

n n	 n n	 n	
^+

L E ^il:n = L E µi , j:n — ( E µi:n) L µj:n
i=1 j=1	 i=1 j=1	 i =1	 j=1

= n(µt (21 ) ► —	 :1 }:	 N'I

= n var( X)

= ncr1,1:1• (5.3.12)

All the just-given identities are very simple in nature and hence can be
effectively used to check the accuracy of the computation of the single
moments, the product moments, variances, and covariances of order statistics
from any arbitrary population.

In addition, these quantities satisfy some interesting recurrence relations,
which are presented in the following theorems.

Theorem 5.3.1. For l< i s n — l and m= 1,2,...,

m
µi+ l :n + (n — 1 )).471,), = n1471h- 1 • (5.3.13)
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Proof. From Eq. (5.2.8), let us consider

I

nµ ^m" -1 	(i - 1)!(n - i - 1)! ôl{F
- 1 (u )}mui -1 (1 — 14Y1-1-1 du

I
 	 I

r

- (i - 1)!(n - i - 1 ) ! JO {F- 1 (u) } m ui -1 (1 - u}" -t -1 (u + (1 - u) ) du

I
	 jj

- (i - 1 }!(n - i - 1)! tlol
{F -I (u) } m u i(1 - u)"-i -1 du

+ r l {F- 1(u) }^"ui -1(1 - u)" -` du)
JO

= iµ;+i:n + (n - i)µ(imR•

The last equation follows by using Eq. (5.2.8) and simplifying the resulting
expression.	 ❑

The recurrence relation in (5.3.13), termed the triangle rule, shows that it is
enough to evaluate the mth moment of a single order statistic in a sample of
size n, if these moments in samples of size less than n are already available.
The mth moment of the remaining n - 1 order statistics can then be
determined by repeated use of the recurrence relation in (5.3.13). For this
purpose we could, for example, start with either/47 )n or µj"'ß. It is, therefore,
desirable to express the moment A(1!,),  purely in terms of the mth moment of
the largest order statistics or of the smallest order statistics from samples of
size up to n. These relations, due to Srikantan (1962), which can then be
utilized instead of the triangle rule for the recursive computation of the
single moments of order statistics, are presented in the following two theo-
rems.

Theorem 5.3.2. For 1 < i 5 n - 1 and m = 1, 2, ... ,

^n`Nimn = ^
r= i

r-i n r -1)..(m)
-1)	

(r)(i 
_ 1 µrar• (5.3.14)

Proof. By considering the expression of µ;'"„ in (5.2.8) and expanding
(1 - u)"' in the integrand binomially in powers of u, we get

(m)	 sn —;	 n!
Ni:n = 

s
E ( —1) (i — 1)!s!(n - i - s)! fol {F-1(u)}mui

+s -1 du

n—i 	ni

S=Q ( — 1)s (i — 1) !s!(n - i - s)!(i + s) µms :i +s
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Upon rewriting the above equation, we derive the recurrence relation in
(5.3.14).	 ❑

Theorem 5.3.3. For 2 < i < n and m = 1, 2, ... ,

1.472
t„^1 —
i:n —

r
L.^

r=n —i +1

/	 - 1n
\ -

1)r-n +i	

(r^ (

r — 1
n — i

{ ,n1
/A.l:r• (5.3.15)

Proof. By considering the expression of 1.4.M in (5.2.8) and writing the
term u i- ' in the integrand as {1 — (1 — u)}i - ' and then expanding it binomi-
ally in powers of 1 — u, we get

n!
N^lmn — 

s
E ( —1)s s!(i — 1 — s)!(n — i)! 10 

I {F - 1 (u)} m (1 — u)n -i +s du	 j

i -1	 nl
•

s
E

  

( —1) s!(i — 1 — s)!(n — i)!(n — i + s + 1)
	l a lmn — i +s+ 1

Upon rewriting this equation, we derive the recurrence relation in (5.3.15).
0

From Theorem 5.3.1, for even values of n, by setting i = n/2 we obtain

2 {14 %2+1:n + 1422: n) = 11n %2:n -1•

For the special case when m = 1, Eq. (5.3.16) gives the relation

1 /f	 ll
21µ'n /2+1:n + Ihn/2:n} = µ'n /2:n -12

that is,

1
E z(Xn /2+1:n + Xn/2:n)) = E( Xn /2:n -1) 5

(5.3.16)

(5.3.17)

which simply implies that the expected value of the sample median in a
sample of even size (n) is exactly equal to the expected value of the sample
median in a sample of odd size (n — 1).

The identities that are given in the beginning of this section are quite
straightforward. In the following theorem, we present two more identities
due to Joshi (1973) satisfied by the single moments of order statistics which
are interesting and simple in nature and, of course, can be useful in checking
the computation of these moments.

 



and
• 1	 n 1 

(
i
n(m);:n = ^ 

im)
'1' ;:;'

i=1 n — L + 1	 i = 1 i
(5.3.19)
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Theorem 53.4. For n z 2 and m = 1, 2, ... ,

n 1 	 n 1 (n+E 7/-471).n = E — N1 : ;)
1 	^

(5.3.18)

Proof. From Eq. (5.2.8), we have

n 1	 n
E µ,mn = E (7)f {F_I (u)}mu i_1 (1 — u )n i du

i 1	 i =1
n= fo1

{F- 1(u)} m 1 ^ (
)u i(1 — u)"' du17-41

;=1

1
= fo1 (F- 1 (u) )m ü {1 — (1 — u) "} du.

Now upon using the identity

n

1 - (1 - u)"= u E (1 -u )i -1

i = 1

(5.3.20)

in Eq. (5.3.20) and simplifying the resulting expression, we derive the identity
in (5.3.18).

Similarly, from Eq. (5.2.8) we have

^

• 1

 µ^me = v` 1 1  — u)"' du
— i + 1 i 1 (

•

 n )f{F_1(u)}mui_1(1

1 n^—•1o
1m= f {F-1(u)}

^ i Ö 
(n)u'(1 — u) "- ` du (1 _ u)

= f
o1

{F -10)}m (1
 I

 u)  ( 1 — u "} du.	 (5.3.21)

Upon using the identity

n

1 — u" = (1— u) Eui- 1

i -1
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in Eq. (5.3.21) and simplifying the resulting expression, we derive the identity
in (5.3.19).	 ❑

The triangle rule established in Theorem 5.3.1 for the single moments of
order statistics is extended in the following theorem for the product moments
of order statistics.

Theorem 53.5. For 2 < i < j < n and m i , mj = 1, 2, ... ,

1	 1( —	 (mm' ) + ((	 (m"m') +	 +	 (m " m' ) 	n (m" m' )l	 )EI'i,j:n	 l^	 1 )EI'i-1,j:n 	( n	 1^	 )E'l'i lj -l:n = EI'i- lj - l:n-1'

(5.3.22)

Proof. From Eq. (5.2.9), let us consider

m;)

E^ i-

(m
;i n-1

—  	 ((	 {F -1 (u i )}
m

1F_
1 (uj ) } m'

(i — 2)!(j — i — 1)!(n — 	JI

Xu ii -2 (uj — ui)'-'-1(1 — u 1 )n -' du i du 

{F -1 (ui)} m
'{F

-1 (uj)}m'(i — 2)!(j — i — 1)!(n — 1) ! o<u ; <u; <1

Xu; -Z (uj — u i )' -i -1 (1 — uj ) n '{u i + (ui — u i ) + (1 — ui )) du i du i

n!
	

,
( i — 2)!(j — i — 1)!(n — f) ! {O<u,<I {F 

1 (u)}
m

{F 1 (uj )}
m

'

X U i 1 (Uj — u i )' - ' -1 (1 — uj ) n  du i du 

n+	 {F -1(ui)}
m; {F

-1 (Uj )}
m;

 u! --2 (u — u i )' - '(1 — uj) ' dui Chi 
0<u i <u; <1

m;
+	 {F-1(ui)} {F -1 (U

0<u ; <u; <1

Xu -2 (u1 — 141) j-'-1 (1 — uj )n-j +1 du i dui }

= (i — 1)µ,'j :n ' ) + (J — l)A(ini_i;ny„ + ( n — j + 1)µ im , l m12 l:n '

The last equality follows by using Eq. (5.2.9) and simplifying the resulting
expression.	 ❑

n!

j)'1 0 <u ; <u; <1

n!
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The recurrence relation in (5.3.22) due to Govindarajulu (1963a) shows that it
is enough to evaluate the (m 1 , mj)th moment of n - 1 suitably chosen pairs
of order statistics, if these moments in samples of size less than n are already
available; for example, the knowledge of (gri di ) for 2 5 j s n) or (µ; ' : n')

for 1 5 i 5 n - 1) or (gVido for 1 5 i 5 n - 1) will suffice. The (m,, m j)th
moment of the remaining 

( n z I ^ pairs of order statistics can then be
determined by repeated use of the recurrence relation in (5.3.22). Hence, it is
desirable to express the product moment 4"""  purely in terms of the
(m 1 , mi )th moment of the pairs of order statistics just given from samples of
size up to n. These relations, due to Srikantan (1962) and Balakrishnan,
Bendre, and Malik (1992), which can then be utilized instead of Theorem
5.3.5 for the recursive computation of the product moments of order statis-
tics, are presented in the following three theorems.

Theorem 53.6. For 1 5 i < j 5 n and m i , m, = 1, 2, ... ,

/—]	 n 1s- r -(m ; .mi) _ r E l s+n —i—i + 1
(— )

r- 1
(

n („ mi)
^'1^i.j:n Lr=i s = n—j+r+ 1

1 — 1 n — J s µmr+t:s•

(5.3.23)

Proof. By considering the expression of µ;' ', n i1 in Eq. (5.2.9) and ex-
panding the term (v - u)j -i- ' in the integrand binomially in powers of u
and v, we get

j —
^^
i

++
—I	 nt

f'1'i,J:n	 L	') -	 (— )r 
1 — ! — 1 	

1
r=0 	(i - 1)!(j - i - 1)!(n - j)!

X 	ff	 {F- 1 (Ui)} m1F-1(uj))m)ui-1+ruj—i—l—r/1—uj )n —j dlliduj
0 <ui<ai< l	

ll

i -^	 n!
	—

	1)r —i (i — 1)!(n - j)!(r - i)!(j - r - 1)!r =i	

(	 lX	 ff 	{F -1(ul)^m^1F-1(Uj)Jm^UrlUj-r -1(1 -uj )n-^ dui dui .
o<14,<14; <1

Now writing the term uj - r -1 in the integrand as (1 - (1 - uj))j-r-1 and
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then expanding it binomially in powers of 1 - u j , we get

j - 1j—r—I
= E E ( — 1)s+r—i 	

r=i s = o	 (i - 1)!(n - j)!(r - i)!s!(j - r - 1 - s)!

;
X	 if
	

{F-1(ui)^ {F -1 (uj)} 1 14';' — '(1 — 141) n —j+s du i dui
0<u ; <ui <1

j -1 j-r-1	 n!(r - 1)!(n - j + s)!
= E E (-1)s +r —i 	

r=i s =o	 (i — 1)!(n - j)!(r - i)!s!( j - r - 1 - s)!
X(n -j+s+r+1)!

{m ; , mi )
X E'1'r, r+ 1 : n —j +s+r+ 1'

Upon rewriting the above equation, we derive the recurrence relation in
(5.3.23). 	 ❑

By proceeding on similar lines, we can prove the following two theorems.

Theorem 5.3.7. For 1 < i < j � n and m i , m j = 1, 2, ... ,

j -1 	r 	-r - 1n(m.C^	 — —i+ l m^)= L.,	
1:

j -i - 1
)(s 

n j )(s ) µ l , r+ l:s •
r=j —i s = n—j+r+ 1

(5.3.24)

Theorem 5.3.8. For 1 < i < j < n and m i , mi = 1, 2, ... ,

" i " r-1	 s-r - 1 ( n
n ') = 	 ^ (-

1) s+j (j
— i - 1 ) ( l - 1 

) I S ) µsm'rm"^S•r=j —i s =i +r

(5.3.25)

0

In the following theorem, we present a recurrence relation similar to the
one in (5.3.22) satisfied by the covariances of order statistics established by
Balakrishnan (1989).

Theorem 5.3.9. For 2< i < j<_ n,

(i - 1)Qi,l :n + (j - L)Qi-1,j^n + (n - j + 1)Q j- 1 :n

= n ^^i—I ,j—I:n —t + ( Ni — i :n— t — Ni—l:n )( Nj—I:n —i — i='i:n)}. (5.3.26)

n!

(m ; , mi )
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Proof. From Theorem 5.3.5 we have, for 2 5 i < j 5 n,

(i — 1 )Qt,j:n +	 + (n — J + 1)oi- 1,l—l:n

= nQi - 1,j-1: n - 1 + nµi- l:n -lµj-l:n-I — (i — 1)14i:nµj:n

- 1 )1-1 i-1:nµj:n — (n - J + 1)µi-1:nµj-1 :n

nµi- l :n -lµj-l:n -1

- Nj:nl( I - 1)111:n + (n - i + 1)1.4i -1:n!

— (n - j + 1 ) µi_l:nlµj-t:n — µj:n)

= ncri-I,j-1:n

ff

-1 +

µj:n)

upon using (5.3.13). 	o

A warning has to be issued here that if any one of Theorems 5.3.1-5.3.3 is
used in the computation of the single moments of order statistics, then the
identity in (5.3.3) should not be employed to check these computations. This
is so because the identity in (5.3.3) will be automatically satisfied if any of
Theorems 5.3.1-5.3.3 is used, as noted originally by Balakrishnan and Malik
(1986). In order to illustrate this point, we set i = 1, i = 2, ... , i = n - 1 in
Theorem 5.3.2 and add the resulting n - 1 equations to obtain

n-1	 n	
n-1	 r 	n r-1	 - 1

L.^µi'72— ( 1 )µtml+ E(-1)—1
 ( r )

E( -1 ) 5 (
r
 s )µrm i

i=1	 r-2	 s-0

n-2

+( 1)n -1 E (—i)sin 
_

 s 1 )µ(̂  ^ •
s = o

By using the combinatorial identities

r-1	 n-2

and E (-1)s(n S 1 ) _ (-1) n

s-0

in Eq. (5.3.27), we obtain

n-1
(m ) 	(m	 (m)

µi :n = nµl )
: l - lJn:n+

i - 1

which simply implies that the identity in (5.3.3) will be automatically satisfied.
A similar warning has to be issued that if any one of Theorems 5.3.5-5.3.8

is used in the computation of the product moments of order statistics, then

(5.3.27)

E(-1)s(r - 1 ) =0s
s =0
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the identity in (5.3.4) should not be employed to check these computations as
it will be automatically satisfied.

In addition to the results presented above, several more identities and
recurrence relations are available for single as well as product moments of
order statistics. A compendium of all these results can be found in the recent
monograph by Arnold and Balakrishnan (1989). By a systematic recursive
usage of many of these results, they have given the maximum number of
single and product moments to be evaluated for the computation of all
means, variances, and covariances of order statistics in a sample of size n
when these quantities are available in samples of sizes up to n — 1. This
result is presented in the following theorem and interested readers may refer
to Arnold and Balakrishnan (1989) for a proof.

Theorem 5.3.10. In order to compute all means, variances, and covari-
ances of order statistics in a sample of size n from an arbitrary distribution,
when these quantities are all available in samples of sizes up to n — 1, we
have to evaluate at most two single moments and (n — 2)/2 product mo-
ments if n is even, and at most two single moments and (n — 1)/2 product
moments if n is odd.

If the population density is symmetric around zero, as mentioned earlier in
Section 2.4, we have

Xi:n ^ —Xn— i +l:n

and

( Xi:n 9 Xj:n) 	 (—Xn—j +1:n7 —Xn— i +1:n)•

These results reduce the amount of computation involved in the evaluation
of moments of order statistics from a symmetric population. For example,
from Theorem 5.3.1, we get in this case

and

On) (m)
E'^'(n /2): n 	E'1'(n /2): n —1 ) for n even and m even 	 (5.3.28)

(m)
E 1`(n/2):n - 1 — 0, for n even and m odd.	 (5.3.29)

These two results are seen to decrease immediately the number of single
moments to be evaluated in a sample of size n that is given in Theorem
5.3.10 by 1. By using some similar arguments, Joshi (1971), David (1981), and
Arnold and Balakrishnan (1989) have determined the maximum number of
single and product moments to be evaluated in a sample of size n from a
symmetric population and their result is presented in the following theorem
without a proof.
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Theorem 5.3.11. In order to compute all means, variances, and covari-
ances of order statistics in a sample of size n from a symmetric distribution,
when these quantities are all available in samples of sizes up to n — 1, we
have to evaluate at most one single moment if n is even, and at most one
single moment and (n — 1)/2 product moments if n is odd.

5.4. UNIVERSAL BOUNDS

In this section, we derive universal bounds for the expected value of the
largest order statistic X, a general order statistic Xi : and the spacing
Xj:n — Xi:n•

First, let us consider (without loss of generality) an arbitrary population
with mean 0 and variance 1; that is,

f0IF- I(u) du = 0	 and	 f ' (F-I (u)}2 du = 1. (5.4.1)

Then, by writing the expected value of the largest order statistic as

µn:n = folF
-I( u)(nun -I — A) du (5.4.2)

and using the Cauchy-Schwarz inequality, we obtain

zn
1/2

Nn :n ^

z2A+ A (5.4.3)
2n — 1

By noting that the RHS of (5.4.3) is minimum when A = 1, we simply obtain

(n-1)
N'n•n S	 1/2(2n — 1)

(5.4.4)

This result was originally derived by Hartley and David (1954) and Gumbel
(1954) and was discussed further by Moriguti (1951, 1954). Further, from
(5.4.2) we realize that the bound in (5.4.4) is attained when and only when

F-1 (u) = c(nun -I — 1),	 0 < u < 1.

The constant of proportionality c is determined from Eq. (5.4.1) to be
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c = (2n - 1) 1 /2/(n - 1), which then yields

F_'(u) - 
(2n - 1) 1 /

2

(n-1)
(nun - ' - 1),	 0 < u < 1.	 (5.4.5)

Hence, after noting that F-1(u) in (5.4.5) is a monotonic increasing function
in u, we obtain the distribution for which the bound in (5.4.4) is attained
to be

1/(n-1)
1	 (n-1)

F(x) - 	 I/Zx + 1
n (2n - 1)

(2n - 1) 1 /2

	 < x < (2n - 1) 1/2. (5.4.6)
(n - 1)

Similarly, by considering an arbitrary population with mean 0 and variance
1 and by writing the expected value of the ith order statistic as

	NI:n = 1 1 	u1-1(1 - u)n r du - A du (5.4.7)
	1	 1 

	o	 B(i, n - i + 1)

and using the Cauchy-Schwarz inequality, we obtain

1/2
B(2i - 1,2n - 2i + 1)

^	

2
I < 	  2A+ Aµ.n	

{B(i n - i + 1)} 2
(5.4.8)

By noting that the RHS of (5.4.8) is minimum when A = 1, we simply derive
Ludwig's (1959) bound that

1µ ;:n 1 < {B(2i - 1,2n - 2i + 1) - {B(i, n - i + 0) 2 ) 112 /B(i n - i + 1),
(5.4.9)

where B(•, •) is the complete beta function as defined in (2.2.18). We may
note here that the bound in (5.4.9), for the case when i = n, becomes the
same as the bound in (5.4.4). Further, by denoting

1

g(u) 	B(i, n - i + 1)
	u' - '(1 - u) "` - 1,	 u E (0, 1), (5.4.10)

 



11F-1(u){
	1 ' + 1)  u; -L (1 - u )"

1
	u i-1 (1 - u)" -' - A )
B(i, n - i + 1 )	

du

-i
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we obtain

g'(u) = 	 1	 {(i - 1)ui - 2(1 - u)" - ' - (n - i)u i
-

1
(1 

- u)" - i - L )
B(i, n - i + 1)

1
ui - 2(1 - u)" - ' - L {(i - 1) - (n - 1)u),	 u E (0,1).

(5.4.11)
B(i,n - i + 1)

It is quite clear from the expression of g'(u) in (5.4.11) that the function g(u)
in (5.4.10) becomes a monotonic function in u only when i =1 or i = n.
Hence, the bound in (5.4.9) is attainable only when i = 1 or i = n.

Next, we shall derive the universal bound for the expected value of the
spacing W i : " = Xi : n - X;  , 1 < i < j < n. For an arbitrary population with
mean 0 and variance 1, by writing the expected value of W. .

 j :
 n as

and using the Cauchy-Schwarz inequality, we obtain

B(2j - 1,2n - 2j + 1)	 B(2i - 1,2n - 2i + 1)
E(W,. l: ") ^ 

{B( j , n - j 1) ) 2 	+	 {B(i, n - i + 1)) 2

B(i +j- 1,2n- i -j+1) 	1/2
)

2 B(i,n - i + 1)B(j,n - j + 1) + a2
	

( 5.4.12

By noting that the RHS of (5.4.12) is minimum when A = 0, we obtain
Ludwig's (1959) bound that

E(W,i:n) 5
B(2j - 1,2n - 2j + 1)	 B(21 - 1,2n - 2i + 1)

{B( j, n - j + 1))2
	  + 

{B(i, n - i + 1)) 2

B(i+j- 1,2n- i -j+1) 1/2

2 B( i, n - i + 1) B( j, n - j + 1)	
• (5.4.13)

By setting j = n - i + 1, in particular, we deduce from (5.4.13) the universal
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bound for the expected value of the ith quasirange W : n = Xn —i+ 1 : n — Xi : n ,

1 < i < (n + 1)/2, to be

E(	 < 	 (B(2i - 1,2n — 2i + 1) — B(n	 I ^z, n)}	 .W : n) 
B(i, n — i + 1)

(5.4.14)

For the special case when i = 1, we deduce the universal bound for the
expected value of the sample range Wn = Xn:n — X1 :n to be

an 	1
E(K'n) �_ 	  1	

( ni)
2n — 2(2 — 1) 1/2  

(5.4.15)

The bound in (5.4.13) can be shown to be attained only when i = 1 and
.l = n.

The bounds derived in (5.4.4), (5.4.9), and (5.4.13) can be improved for the
case when the population distribution is symmetric about zero. For this
purpose, we use the relation in (2.4.13) and write the expected value of
the largest order statistic Xn : n from a symmetric population with mean 0 and
variance 1 as

1

N n:n = 2 J
o
 F -1 (u){nu n -1 — n(1 — u)" 	 A) du.	 (5.4.16)

By applying the Cauchy-Schwarz inequality to the above integral, we immedi-
ately obtain

1 / 2n 2

N' n : n^ 2 {l 2n —  1

1/2

2n 2B(n, n) + A21	 .	 (5.4.17)

By noting that the RHS of (5.4.17) is minimum when A = 0, we obtain

n
N'n:n < 	 ,^2 1

{2(2n — 1)} 1/2

1/2
1

(2n — 2 )
n-1

(5.4.18)

It is of interest to mention here that the bound in (5.4.18) is exactly half of
the bound in (5.4.15) and this could be explained through the fact that
N'n:n = E(Wn ) for a population symmetric about zero. From (5.4.16) we note

 



1—

1
c

= ^n

2n — 1
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that the bound in (5.4.18) is attained when and only when

F -1 (u) = c{nu" -1 — n(1 — u) n - '},	 0 < u < 1.

The constant of proportionality c is determined from Eq. (5.4.1) to be

1/2

which then yields

F -1 (u) _ 1	 2n-1

1 _ 2n-

1/2

fun -I — (1 — u) n -1 },	 0 < u < 1.

(5.4.19)

Hence, after noting that F -1(u) in (5.4.19) is a monotonic increasing function
in u, we conclude that the bound in (5.4.18) is attainable and is attained for a
symmetric population with its inverse cumulative distribution function as
given in (5.4.19).

Similarly, by using the relation in (2.4.13) and writing the expected value
of the ith order statistic Xi  from a symmetric population with mean 0 and
variance 1 as

n = 2 f01F-1(u) B(i,n 1 i + 1) u`
-1(1 — u)

" -i

B(i,n —i+1)
	u Al"-i(1 — u)` — A^ du (5.4.20)

and using the Cauchy-Schwarz inequality, we obtain

1/2
1 B(2i — 1 , 2n — 2i + 1)	 B(n , n)_  	 2

'µ` nl -
�

2 2 (B(i, n — i + 1)} 2 	2 (B(i, n — i + 1)) 2
	 + A

1

(5.4.21)
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By noting that the RHS of (5.4.21) is minimum when A = 0, we obtain

1 	I^z(13(2i — 1, 2n — 2i + 1) — B(n, n)} .
vz,B(i, n — i + 1)

(5.4.22)

We note that the bound in (5.4.22), for the case when i = n, simply reduces
to the bound in (5.4.18). Further, we observe that the bound in (5.4.22) is
exactly half of the bound in (5.4.14), which could be explained through the
fact that Iµ i : n I = ZE(W : n ) for a population symmetric about zero. It may be
shown in this case that the bound in (5.4.22) is attainable only when i =1 or
i = n.

Finally, by using the relation in (2.4.13) we may write the expected value of
the spacing W , i :  n = Xi : n — Xi : n , 1 < i < j < n, from a symmetric popula-
tion with mean 0 and variance 1 as

1
E(W,i:n) _ —^I

IF-I( u ) 	 1 	ui -I(1 — u)
n-i

2 0 	B( j, n — j + 1)

1

u i -I( 1 — u) n- ,

B(i,n —i + 1 )

1

B(i,n — i + 1)	 JJJ

l
+ 	 un-`(1 — u)1 ' — ,l j du. (5.4.23)

By applying the Cauchy-Schwarz inequality to the above integral, we immedi-
ately obtain

if B(2j — 1,2n — 2j + 1)	 B(2i — 1,2n — 2i + 1)
E(W, i:n ) < 2 2 	 2	 +2	 2	{B( j , n — j + 1)}	 {B(i, n — i + 1)}

— 2 	 B(n,n)
	2

B(n,n)

	{B( j, n — j +1))"
,  

	
{B(i, n — i + 1) }2

4 
 B(i + j — 1, 2n — i — j + 1)

B(i,n— i +1)B(j,n —j+1)

	  n-1/	 )i -Iu	 1— u
B( j, n — j + 1)

1

I/z

+ 4
B(n— i +j,n— j +i)	

+a2
B(i, n — i + 1)B( j, n — j + 1)

(5.4.24)
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By noting that the RHS of (5.4.24) is minimum when A = 0, we obtain

1	 1

B(i,n - i + 1)B(j,n - j + 1)
{B(i + j - 1,2n - i - j + 1)

1/2

-B(n - i + j, n - j + i)}1 . (5.4.25)

It is important to mention here that the bound for the expected value of the
ith quasirange deduced from (5.4.25) is identical to the one derived in
(5.4.14) and thus no improvement is achieved in the case of symmetric
distributions.

Table 5.4.1. Universal Bounds for E(Xa , R ) and Exact Values for the
Uniform( -Vi, +a) and Normal(0, 1) Populations

n
Bound in

(5.4.4)
Bound in
(5.4.18)

Exact value
for the

Uniform(- ti, + Vi)

Exact value
for the

Normal(0,1)

5 1.33333 1.17006 1.15470 1.16296
10 2.06474 1.62220 1.41713 1.53875
15 2.59973 1.96960 1.51554 1.73591
20 3.04243 2.26455 1.56709 1.86747
25 3.42857 2.52538 1.59882 1.96531
30 3.77548 2.76172 1.62031 2.04276
35 4.09312 2.97940 1.63583 2.10661
40 4.38784 3.18223 1.64756 2.16078
45 4.66399 3.37289 1.65674 2.20772
50 4.92469 3.55335 1.66413 2.24907
55 5.17226 3.72507 1.67019 2.28598
60 5.40852 3.88922 1.67526 2.31928
65 5.63489 4.04672 1.67956 2.34958
70 5.85250 4.19832 1.68326 2.37736
75 6.06232 4.34463 1.68647 2.40299
80 6.26511 4.48618 1.68928 2.42677
85 6.46154 4.62339 1.69177 2.44894
90 6.65217 4.75665 1.69398 2.46970
95 6.83749 4.88627 1.69597 2.48920

100 7.01792 5.01255 1.69775 2.50759

E(B''"") < al
 {B( j, n 	1) }2 

{B(2j - 1,2n - 2j + 1) - B(n, n)}

1
+ 	 2 {B(2i - 1, 2n - 2i + 1) - B(n, n)}

{B(i, n - i + 1 )}

2
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In order to give an idea about the sharpness of these bounds, we have
presented in Table 5.4.1 the bounds for the expected value of the largest
order statistic calculated from (5.4.4) and (5.4.18) for sample size n = 5(5)100.
Also given in Table 5.4.1 are the exact values of E(X,, :n) for the
Uniform( - v, + {3- )  and Normal(0, 1) populations. The exact values of
E(X,, : ,,) for the standard normal distribution have been taken from the
tables of Harter (1970) and for the Uniform(- v, + I) distribution they
have been calculated from the exact formula given by 12 [n/(n + 1) - Z]. It
is clear from this table that the bound in (5.4.18) based on a symmetric
distribution gives a considerable improvement over the bound in (5.4.4). It is
also clear from this table that both these bounds become less sharp as n
increases. Note, however, that in the case of Uniform( - V, + /) distribu-
tion even the bound in (5.4.18) is not useful when n >- 12 as it is more than
+ J. Interested readers may refer to David (1981) for some improvements
on these bounds when the population distribution has a finite support, such
as the case here.

Similarly, we have presented in Table 4.5.2 the bounds for the expected
value of the ith order statistic calculated from (5.4.9) and (5.4.22) for sample
size n = 10 and 20 and i = n/2 + 1(1)n. We have also included in this table
the exact values of E(X; : „) for the Uniform(- {3- , + f ) and Normal(0, 1)
populations. The necessary values of E(X;: ,,) for the standard normal

Table 5.4.2. Universal Bounds for E( Xi ,/ and Exact Values for the
Uniform( - V, + Id) and Normal(0,1) Populations when n = 10 and 20

n i
Bound in

(5.4.9)
Bound in
(5.4.22)

Exact value
for the

Uniform( -	 + a)
Exact value

for the
Normal(0, 1)

10

20

6
7
8
9

10

11
12
13
14
15
16
17
18
19
20

0.95370
1.00024
1.10865
1.33656
2.06475

1.26752
1.27847
1.30117
1.33741
1.39051
1.46657
1.57747
1.75013
2.06562
3.04243

0.30900
0.78634
1.02196
1.17848
1.62220

0.25528
0.69886
0.98901
1.13469
1.20297
1.25428
1.32063
1.42530
1.62278
2.26455

0.15746
0.47238
0.78730
1.10221
1.41713

0.08248
0.24744
0.41239
0.57735
0.74231
0.90726
1.07222
1.23718
1.40214
1.56709

0.12267
0.37576
0.65606
1.00136
1.53875

0.06200
0.18696
0.31493
0.44833
0.59030
0.74538
0.92098
1.13095
1.40760
1.86748
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distribution have been taken from the tables of Harter (1970) and for the
Uniform( - v , + a) distribution they have been computed from the exact
formula given by 12[i/(n + 1) - 2]. It can be noted from Table 4.5.2 that
the bound in (5.4.22) based on a symmetric distribution gives a good improve-
ment over the bound in (5.4.9) for all i. Once again, we observe that
increasing values of n make both these bounds less sharp.

Several improvements and generalizations of these bounds have been
presented by Arnold and Balakrishnan (1989). Some other methods of
deriving bounds for expected values of order statistics have been discussed in
detail by David (1981) and Arnold and Balakrishnan (1989).

5.5. SERIES APPROXIMATIONS

As pointed out in (1.1.3) and (2.4.2), we have

Xi:n = F-'(U:n) and (X1: ,,, X) e
 (F- '(U:n), F - '(U : n)). (5.5.1)

Upon expanding F- '(U, : n) in a Taylor series around the point E(Ui : n ) =
i/(n + 1) = p i , we get a series expansion for X i :n from (5.5.1) as

Xi:n = F-1(Pi) + F
-I(1)

(Pi)(U:n - Pi) + 1F -1(2)(Pi)(U:n P1) 2

+ 6F -1(3)(pi)(U:n - Pi) 3 	1FF
-

'(4)(Pi)(U:n - p1)4 + .. .

(5.5.2)

where F- '( ' )( pi), F -1(2k pi ), F-1(3)( p;), F - 1(4k pi), ... are the successive
derivatives of F -1(u) evaluated at u = pi .

Now by taking expectation on both sides of (5.5.2) and using the expres-
sions of the central moments of uniform order statistics derived in Section 4.7
[however, written in inverse powers of n + 2 by David and Johnson (1954)
for computational ease and algebraic simplicity], we derive

I	 Pigi	 I(2)
tti:nF (Pi) + 

2(n+2) F- (P, )

+ p(n + 2)2 [ 3 (q1 - Pi)F- 1(3)(p,) + 8Pig1F-1(4)(P1)J
1

+ (nP+

iqi

 2)3 [ 3 1 (gi - pi )F -1(3)( 	 +  {(gi - Pi)2 - pigi)F- '(4j(Pi)

+ 612igi(g1 — pi)F -1(5)(Pi) + 48p2g2F-1(6)(P;)J, (5.5.3)

where gi= 1 - pi = (n - i + 1)/(n+1).
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Similarly, by taking expectation on both sides of the series expansion for
X,?,, obtained from (5.5.2) and then subtracting from it the approximation of
14 : n obtained from Eq. (5.5.3), we derive an approximate formula for the
variance of Xi: „ as

Cri,i:n — n + ,2 {F
- 1(1)( pi )}2 + 	Pigi 

2 1 2(gi - p1)F-1(1)( Pi) F
-1(2)

(Pi)l	
(n+ 2)

+Pigi[F-1(u( pi)F-1(3)(p1) + 2{F -I(2)(pi)} 2

]}

+ 	Pig;
	2(qi- p1)F-1(I)( p i ) F -1(2)

(p i )
(n + 2) 3

+{(qi - Pi) 2 — Pigi}L2 F-I(I)(pi)F -1(s)
(p i) + 3

2 
(F I(2)(Pi)} 2

J

+pigi(qi - Pi) i 3
F-1(1)( p I ) F - I(4)(

 pi) + 3F- 1(2)(P1) F-I(3)( Pi)
)

+ ^peg2 f F- 1(I)
(pi)F - 1(5)(pi) + 2F- I(2) ( Pi)F -I(4)(Pi)

+ -
3

	j.	 (5.5.4)

Finally, by proceeding similarly and taking expectation on both sides of the
series expansion for Xi : n X1: n obtained from (5.5.2) and then subtracting
from it the approximation for µ i: nµ n obtained from (5.5.3), we derive an
approximate formula for the covariance of Xi: „ and X„ as

ai. i :n

Pig-
	 )

2
F-1(1)(Pi)F-1(1)(P1)+ 

(n P+ 2 ) 2 1(gi - P; )F —I(2)(Pi)F 1 ( 1)(P,)

1
+ (q1 pi)F 1(1)( pi)F-1(2)(P1)	 F-+ 2Pigi 1(3)(Pi) F-1(1) (

pi)

+ 2P1g'F 1(1)( pi)F -I(3)( P1) + 2Pig1F- 1(2)( Pi )F
- I(2)(

pi )

+  Pig1 3 I (qi — Pi)F -1(2)( Pi )F -1(U(Pi)
(n + 2) L

- (q1
 - p1)F

-1(1)(Pi)F -1(2)(p1) + {(gi - Pi)2 - Pigi}F -1(3)(pi)F -I(I)(pi)

+ {(g1 - p1)2 - p1g1}F- 1(I)( Pi )F
-

1(3)( pi)

+

{

3 1
Z(qi - Pi)(g1 - p1 ) + 2P1gi - 2pig1}F -1(24Pi)F -1(2)(p1)
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5	 5
+ 6P1 gt(q; — Pt)F -44)(Pr)F-1(I)(P1) +  pg ( 4  — p1)F-I(1}(Pi)F-1(4)(P1)

▪ {piqi(qi 
- P,) + 2p,q . (g1 — P1)} F-1(3)(P,)F -1(2)( pi)

1
+ {P,91(41 — P1) +	 —P,)}F-1(2)(P;)F-1(3)(P1)

+ gPZg2F-'(s)(p;)F-1(I)(p1) + öP2gjF-1(I)(P;)F-1(5)(P1)

+ 4 p2glqlF-t(4)( pi) F- 1(2)( P1) + QPiplgi F- 1(2)(Pi)F-1(4)( P!)

1
+ 12 {2PZ(e + 3P,P1g, g1)F- I(3)( Pt)F- I(3)(P1 ) (5.5.5)

The evaluation of the derivatives of F-1(u) is rather straightforward in
case of distributions with F-1(u) being available explicitly. For example, for
the logistic distribution with pdf

f(x) = e -X/(1 + e -x) 2 ,	 —co <x < x,

and cdf

we have

We then obtain

	F(x) = 1/(1 + e -x),	 — co <x < co ,

x = F-1 (u) = log u — log(1 — u).

1	 1
F-1(1)(u) = - +

u	 1- u '
1	 1

F-1(2)(u)	 u2 + (1 — u) 2 '

	1(3)	
1	 1	 1

F	 (u) = 2{ u3 + 
(1

 ....
u) 3 J}'

(	 1	 1
F - 1(4)(U) = 6S u4 + (1 - u)4 ,

	1 	 1
F-45)(u)	

t
(u) = 24{ 

us + (1 — u) 5 '

	1(6)	
(	 1	 1

F- (u) = 120( — 7 + (1 — u)b '

and so on.
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Fortunately, the evaluation of the derivatives of F.-1(u) is not difficult
even in case of distributions with F -1 (u) not existing in an explicit form. In
this case, by noting that

d 	dr	 1	 1	 1
F-ui)(u) du F-I(u) =du = (du /dx) _	 =f(x) 	 f(F-I(u))

 '

(5.5.6)

which is simply the reciprocal of the pdf of the population evaluated at
F- '(u), we may derive the higher-order derivatives of F-1(u) without great
difficulty by successively differentiating the expression of F - 'I'>(u) in (5.5.6).
We shall illustrate this by considering the standard normal distribution. In
this case, by making use of the property that (d/dx)f(x) = —xf(x), we
obtain

 1
F -1(0( u) - f(F _ 1( u)) ,

F- '(2)(u) = F-1 ( u)/{f(F -1 (u)) } 2 ,

F -1(3)(u) = {1 + 2{F -1 (u)} 2}/{f(F -1 (u)) } 3 ,

F- ' (4)(u) = F- '(u) {7 + 6{F- '(u)} 2
}/{f(F

-1 (u)) }4 ,

F -45)(u) = {7 + 46 {F- '(u)} 2 + 24{F- '(u) } 4}/{f(F- '(u)) } 5 ,

F-46)(u) = F- '(u){127+ 326 {F- '(u)}2 + 120{F -1 (u) } 4}/{f(F -1 (u)) } 6 ,

and so on.
David and Johnson (1954) have given similar series approximations for the

first four cumulants and cross-cumulants of order statistics. As mentioned
earlier, these series approximations are given in inverse powers of n + 2
merely for the simplicity and computational ease. It should be mentioned
here that Clark and Williams (1958) have developed series approximations
similar to those of David and Johnson (1954) by making use of the exact
expressions of the central moments of uniform order statistics where the k th
central moment is of order ((n + 2Xn + 3) • • (n + k))'' instead of in
inverse powers of (n + 2). These developments and also some other methods
of approximation have been discussed in great detail by David (1981) and
Arnold and Balakrishnan (1989).
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EXERCISES

1. For 1 = 1, 2, ... , n — i and m z 1, prove that

(n	U) (m)	 /	 (r) (1-r ) ( 1 1 (m)
\n — l) Ni:n — ^ (-1) n	 r N'i+r:n -l +r+

where n(m ) = 1 when m = 0 and = n(n — 1) • • • (n — m + 1) when
mz1.
Similarly, for 1 = 1, 2, ... , i — 1 and m z 1, prove that

(!) (m )
 =
	 (n_r)	 1

(i - 1) µi. n — ^	 — l — r) (1-n+r) n	 n—r )N
(m)
i - 1 :r•

Using these relations, deduce the results of Srikantan (1962) presented in
Theorems 5.3.2 and 5.3.3.

2. For 1 ^ i < 1< n and m Z 1, show that

n- 1
 ^` ( r - 1 n — i —r (m)( 7 ) «i=  L.^ 

l	 r 	)	 1 -
r=0

(Sillitto, 1964)

3. For k+1Sn-1 and mz1, show that

n-1 nE (i — 1) (k)(n — i) (1)µ,m,), = k!l! k + 1 + 1 µk+1:k+1 +1;
i =k+1

similarly, for k + 1 < n — 2 show that

(k)	 (1)E,	 E (i — 1) (n — 1 ) µ i , i :n = k!1!(k + 
1 + 2 N'k +1,k+2:k +I+2•

iFk +1i =i +1

(Downton, 1966)

4. For any function h for which E(h(X)) exists, prove that for i =
1,2,...,n,

	

E E(h((jr)
h(Xi:n)

	

	 	1  Xi— 'n —i+r) ,{	 } 
	1 — ^ n — j + r 	^

r

=0	

(	 )L — J

r=0

• r=n-1

n-1-1 n—1

05 j< i-1,
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and

=
 ( 7 )E{h(Xi _ n)} 	 E( —Or 	!

i + r n — j + 	E{h(Xi+r:n-j +r)},
r = 0

i + r

0< j < n— i.

(Krishnaiah and Rizvi, 1966)

5. For any continuous population with cdf F(x), show that

E{F( Xi: n)Xj:n} — n + lµ/ + 1: n +1+ 1 <i <j <n,

and

E{Xi:nF(Xj:n)}

n—j+1
f'^'i:n +1 ^ 1 _<i <j <n. 

n+1

(Govindarajulu, 1968)

6. Prove that

i-1 ^r`	 r
µlm	 Ln — E	 (-1)sl r)(s)1A'lmn -r+s+

r=0s=0
ll

and

2< i < n, m >- 1,

n	 r

E	 s+1 n r
e: 12 = E E (-1)	 r)(s)µ(l".1).

r=i s=0, 1

where the summation from s = 0,1 to r denotes the sum from 0 to r
when r < n and from 1 to r when r = n.

(Young, 1970)

7. Let 4 be a function such that (/),:,,  = E(4)(Xi : n )) exists for every i < n
for every n. A doubly infinite matrix A with elements a r5 will be called
an admissible matrix, for a fixed i and n, if

gA(u) = E E arsur -i +1(1 — u) s-n +i _ 1, u E [0,1].
r=0 s=0

If A is admissible for i and n, then show that

E 
°°	 B(r + 1, s + 1) ,/,

^	 Ei:n	 E ars B(i,n — i + 1) 4r+1:r+s+1•
r=0 s=0

1 <i<n, m >_1 ,

(Arnold, 1977)
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8. For r z 1 and m z 1, show that

n
 (m)	 1 	n
µi/(i+ r — 1 )(r)	

.1)
(l + r_-2)(m)/ .

r — 1 I
1=1	 (n + r — 1)	 i =1

and

((
n	 1	 n 

( r _
Liilmn/(n—i+

r)(r)_ 	  

^ `
	r 1 2 ) Nimi/ !.

i =1	 (n + r — 1)(r-1) 
e	

`

Note that these results generalize Joshi's (1973) identities presented in
Theorem 5.3.4.

(Balakrishnan and Malik, 1985)

9. Prove the identity

n

E (1 + t)n—ifi:n(x) = E (;)f,, i(x)ti-1, 	for any t.
i¢1	 i= 1

Let 0 and E be the difference and the shift operators with common
difference 1 acting on functions of y (independent of x). Then, deduce
the operator equality

n	 n
^•	 En —i

	(
7 )fi:a(x)i'*_

i=1	 i =1

Similarly, prove the dual operator equality

n n
fi:n(x)E i -1 = ^ ( i  ) fjj(x)1_1.

i =1	 i -1

For the choice of the function T(y) = 1/(n — y) and T(y) = 1/
(n + r — 1 — y)(' ), show then that the above two operator equalities
yield Joshi's (1973) identities presented in Theorem 5.3.4 and the gener-
alized identities given in Exercise 8, respectively. Can you derive some
simple identities by making some other choices for the function T(y)?

(Balasubramanian, Balakrishnan, and Malik, 1992)

10. Denoting the mean of the range Wn by Wn = /In: n — %^ l : n ^ the mean of
the ith quasi-range W ; n by ^i: n = N n —i + l : n — 11 i  + and the mean
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difference between (i + 1)th and ith order statistics by Xi:n = N' i +1:n —
µi: n, establish the following relations:

(a) nwn -1 - (n -1)wn= w2:n,	 n > 3.

1
(b) ton = ton-1 + -n (Xl :n + Xn-l:n),	 n >- 3.

n(c) ( i ) [^ ( - 1 ) r +l (^)Wn
-i +r -= Xi:n +Xn-i:n,	 1 <i <n - 1.

r(=̂ 0

n-1

(d) {1 - (-1)1w„ = E (-1)r(7.  )w„	 n > 3.
r=2

n-1

(e) 21.0n = E ( - 1)r(r)w r ,	 for odd values of n.
r=2

(f) nXi -l:n-1 - (n - i + 1 )Xi -l: n - i Xi:n ,

r)

(g)	 Xi:n =

n(k) k	 , (k) (n - i + 
r) (

i(k) ^ (-1) r	 (r1Xi- k:n-k+r,
r =o	 (n - k + r)

k < i - 1.

2 < i < n - 1.

(h) 1wi +l:n + (n - j)wi:n — nwi:n-1 1

n- 1
1<i< 	

2

(Sillitto, 1951; Cadwell, 1953; Romanovsky, 1933; Govindarajulu, 1963a)

11. Prove that if Theorem 5.3.5 (or any of Theorems 5.3.6-5.3.8) is used in
the computation of the product moments of order statistics, then the
identity in (5.3.4) will be automatically satisfied and hence it should not
be employed to check the computations.

(Balakrishnan and Malik, 1986)

12. For l< i< n- l and l< k< n- i, show that

n—k+1	 i	 i +k
n - s	 + 	s-r-1	 n - s
k- 1 i,s:n	 E E (s-i-1 )( n - k - i )µ'r , S :n

s =i + 1	 r= 1s =i +1

n
= k µl:kµi:n —k•
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Then, deduce the following results:

n—k+1k +1	 n — j	 _
(a) j^ (n

_ j

k — 1)µ1 '^`" + E ( n — k — 1 )µ l'^`" —

()P1:klul:n_k,

15k5n-1.

(b) ^^`
Lr Ni,s:n + E r,i+1:n — nN'1:111i:n-1)

s =i +1	 r=1

15 i5 n-1.

(c) For distributions symmetric about 0,

n	 i

E Ni,s:n + E N' ► ,i +1:n = 0 +

s =i +1	 r=1

1 <i <n — 1,

and hence, for even values of n (say n = 2m)

E N'r, m+1:2m = 0 .
r=1

(d)

n	 i	 i	
((

` ^i,s: n + E ^r,i+l:n	 441:1 — E i'1'r :n lAi +1:n
s =i +1	 r=1	 r=1

15 i5 n-1.

(Joshi and Balakrishnan, 1982)

13. Prove that

(n — i)(n — i — 1) 	{(r)/(n r 2)1 E 11'n—r —1,n—s:n
r=0 `	 s=0

= n(n — 1)(! n_ i _ l ,n_ i :n _i,	 1 5 i 5 n — 2,

and

n-1 	n 	n-1 

E µi, i + l :n + Ld ( j )µt,j:j = ` ( 7 )1Li:jp:n_j,

i =1	 j=2	 j=1

nz3.

(Joshi and Balakrishnan, 1982)

14. If g(x) is any differentiable function such that differentiation of g(x)
with respect to x and expectation of g(X) with respect to an absolutely
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continuous distribution are interchangeable, then show that

E(g
' (Xi:n)} =

	E
 E{g(x,:n)f'(Xj :n)/f(Xj :n)}, 	1 < i < n,—

J =1

where f(x) is the density function of X.
(Seal, 1956; (Govindarajulu, 1963a)

15. If g(x) is any twice differentiable function such that twice differentiation
of g(x) with respect to x and expectation of g(X) with respect to an
absolutely continuous distribution are interchangeable, then show that
for 1 < i < n

E{gn (Xi:n)) = E{g(Xi:n) E f"(Xj:rr)/f(Xj :n))
J=1

+ ESll g(Xi:n) E Efi (Xj:n)f r (Xk:n)/f(Xj:n)f(Xk:n)1 ;
 j#k

similarly, if g and h are differentiable functions such that differentiation
of g(x)h(x) with respect to x and expectation of g(X)h(X) with respect
to an absolutely continuous distribution are interchangeable, then show
that

E(g'(Xi: n) h ( Xj:n) + g ( Xi : n )h'(Xj:n )}

= — El E{g (Xi:n)h(Xj:n)f'(Xk:n)/f(Xk:n)}.

(Govindarajulu, 1963a)

16. Suppose X1: n < X2: n < • • • < Xn: n are the order statistics from a
population with cdf F(x) and pdf f(x) symmetric about 0. Further,
suppose Y1: n < Y2: n < • • • < Yn : n are the order statistics from the
folded population (folded at 0) with pdf p(x) = 2f(x) and cdf P(x)
2F(x) — 1, x z 0. Let us denote E(Xin"„) by /472, E(Xj.nXj:n) by
E(}7 ) by 47'n), and E(Y : n Y : ) by v i• j : n . Then, prove the following two
relations:
(a) For l< i< n and m>-1,

n^(m) = '(^ (n l (m)	 ( — ) n' ^ (n
 )2 i.n 	E l r Jvi-r:n -r + l l	 11 r v

(m)
r—i+l:r•

r=0 	r = i
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(b) For 15 i<jsn,

i-1
„	 n	 r n

2 N'i,j:n__ ^ ( r ) vi-r,j-r:n -r + L.^ ( r )vr—j+ l, r —i + l: r
r=0	 r=j

j- 1

- E / vr- i +l:rvj-r:n -r

r =i

(c) If e is the error committed in computing each of the v's, show then
that the maximum cumulative rounding error that will be committed
in computing 49, through the relation in (a) will also be E.

(Govindarajulu, 1963b)

17. Let X1 , X2 , ... , X„ be n exchangeable random variables with joint cdf
F(x 1 , x2 , ... , x„); that is, F(x I , x2 , ... , x„) is symmetrical in x 1 , x 2 , ... ,
x„. Then, prove that the results presented in Theorems 5.3.1-5.3.3 and
5.3.5 continue to hold in this case as well.

(David and Joshi, 1968)

18. Prove that the bound for E(W,  j: „) in (5.4.13) is attainable only when
i = 1 and j = n. What is the extremal distribution in this case?

19. Explain why the bound for Iµ i: „I in (5.4.22) is attainable only when i = 1
or n. What is the extremal distribution in this case?

20. Explain why the bound for the expected value of the ith quasirange W,.„
obtained from (5.4.25) (based on the assumption that the population is
symmetric) is identical to the one obtained from (5.4.14) (based on an
arbitrary population).

21. Derive an universal bound for the expected value of the midrange V„ =
Z(Xl: „ + X„ : „). Discuss whether the bound is attainable, and if so, what
is the extremal distribution? What can you say about the bound for the
symmetric distribution case? Can you generalize the results to the ex-
pected value of Z(Xi: „ + Xj: „), 1 5 i < j s n?

22. For the extreme-value distribution with pdf

f(x) = e
-e.ex,	 -ao < x < co,

work out the function F- '(u) and its first six derivatives that are required
for David-Johnson approximation discussed in Section 5.5. Using these
expressions and the formulas in Section 5.5, find approximate values of
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µ;: lo' and Q;, ;:10, compare these values with the exact values
tabulated by Balakrishnan and Chan (1992), and comment on the accu-
racy of the approximation. Incidentally, this distribution is one of the
possible limiting distributions for the sample minimum; for details, see
Theorem 8.3.5.

23. For the gamma population with pdf

1
f(x) = r(p) e -X

x p -1
, x>_0, p>0,

work out the derivatives of F - '(u). Using these expressions and the
formulas presented in Section 5.5, determine approximate values of µ; :10
and cro:10 when p = 2 and 3, and comment on the accuracy of the
approximation by comparing these values with the corresponding exact
values tabulated by Gupta (1960).

 





CHAPTER 6

Characterizations using
Order Statistics

6.1. WHO CARES?

Reactions to characterization results are usually of two kinds. Either one
exhibits fascination and wonderment or spits out a "who cares?" For exam-
ple, the classical characterization result involving order statistics is as follows.
Note that for samples from an exponential distribution X1: n has the same
distribution as X1:1 except for the resealing, and this is true for any sample
size n. Thus the form of the survival curve is the same for any series system
constructed using such i.i.d. exponential components. Is the exponential
distribution the only distribution with this property? The answer is yes. In
fact, under mild regularity conditions, we shall see that it is enough that the
result hold for any one value of n. The result is more than curious. It
highlights an important consequence of the assumptions inherent in using an
exponential model. It may well provide an irrefutable argument against an
exponential model in some situations. Perhaps engineering experiences dic-
tate that series systems with many components have survival curves of
markedly different shape than do systems with few components. If so, then
we must forego using an otherwise attractive exponential model.

A second important use of characterizations is in the development of
goodness-of-fit tests. The present example can be used in this manner
(though the resulting test is not the best available). Suppose we have a large
number of observations from a distribution F, and we wish to test whether
the distribution F is exponential with some unknown unspecified mean 0.
We could act as follows. Randomly split the data into thirds, relabeling for
convenience to get

U1, ..., U,„,

141
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where m = [n/3]. Now for i = 1, 2, ... , m let Z; = 2 ; , W ). Now ac-
cording to our earlier result, the samples U 1 , ... , U. and Z 1 , ... , Z„, will
have a common distribution if and only if the original data were exponential.
So to test our hypothesis, we merely compare the sample distribution
functions of the U's and the Z's using a standard two-sample nonparametric
test (Kolmogorov-Smirnov or some other favorite).

The general message is that useful characterization results are those which
shed light on modeling consequences of certain distributional assumptions
and those which have potential for development of hypothesis tests for model
assumptions. It is true that one must show discretion in cataloging character-
ization results. Clearly, since a distribution is determined by its values at a
countable number of points, almost any countable number of conditions on a
distribution should go a long way toward characterizing a distribution. Two
key references on characterizations are Kagan, Linnik, and Rao (1973) and
Galambos and Kotz (1978). Both contain an interesting discussion of motiva-
tion for the studies of characterizations. The former focuses on characteriza-
tions involving linear combinations of i.i.d. random variables, and has the
normal and stable distributions in the spotlight. The latter, focusing on the
exponential distribution and its close relatives, is more concerned with
characterizations based on order statistics. It, consequently, provides a valu-
able reference for the present chapter.

It is clear that knowledge of the distribution F 1 , 1 completely determines
the distributions F; : n for every i, n. It also completely determines the
marginal and joint distributions of various linear combinations of order
statistics. Our goal is to investigate the obverse of this coin. To whit, we ask
to what extent does knowledge of some properties of the distribution of an
order statistic or of some linear combinations of order statistics determine
the parent distribution?

6.2. THE DISTRIBUTION OF AN ORDER STATISTIC DETERMINES
THE PARENT DISTRIBUTION

Suppose that X 1 , ... , Xn are i.i.d. with common distribution F. Clearly,
knowledge of the distribution of Xn : n determines F completely. This is true
since Fn:n(x) = [F(x)]" for every x and consequently F(x) = [F" :n(x)] l"". It
is not as self-evident that the distribution of any order statistic Fi:n will
determine F. The proof of the assertion involves the representation (2.2.15);
i.e.,

(	
F(x) 	n!

Fi:n( x ) = Î 	 (i - 1)!(n — i)! 
t` -1 (1 — t^ n ` dt.

If two distributions F and F' differ at some point x o , then clearly the
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corresponding order statistic distributions F;:„ and F; :n will differ also at
that same point x0 , since the integrand in (2.2.15) is positive. Knowledge of a
few moments of F will not be adequate to determine F, although it may
allow construction of useful bounds on F. Such a program involving the mean
and variance of F,, : ,, and the Tschebyscheff inequality is discussed in Exer-
cise 1. Knowledge of all moments of F, : „ may under certain circumstances
completely determine F, : „ and hence F. Rather than assume knowledge of
all moments of one order statistic, we might hope to characterize F by
knowledge of a few moments of many order statistics. We expect to actually
need a countable number of conditions, since F needs to be determined at a
countable number of points. The best known result of this type is one due to
Hoeffding (1953). It, together with a variety of variations, is the focus of our
next section.

Before turning to that result, it is interesting to speculate whether the
distribution of a single spacing (instead of a single order statistic) might be
enough to determine the parent distribution. In this case the answer is no.
An example was provided by Rossberg (1972). For this example consider the
spacing X2:2 - X1: 2 based on a sample of size 2. If the common distribution
of the Xi 's is standard exponential then X2 :2 - X 1 ,2 has a standard expo-
nential distribution. Unfortunately, there are different parent distributions
(not exponential) for which the spacing X2 :2 - X1: 2 also has such a standard
exponential distribution (see Exercise 12).

6.3. CHARACTERIZATIONS BASED ON MOMENTS
OF ORDER STATISTICS

Suppose X 1 , ... , X„ are i.i.d. F with finite mean µ. The representation
(5.2.8) of E(X, : „) is most convenient for our present purposes; i.e.,

I

µi:n = Io F_1 (u)gi:„(u) du, (6.3.1)

where g, : „(u) is a Beta(i, n + 1 - i) density. The question at issue is: To
what extent does complete or partial knowledge of the array (µ;:„: i

2, ... , n; n = 1, 2, ...) determine F -  and hence F?
Hoeffding's original proof that the entire array does determine F pro-

ceeds as follows. For each n, consider a discrete distribution which puts mass
1/n at each of the points µ l : „, µ 2: n , ... , µ„ :„. Cali this distribution F,*.
Now show that F* converges weakly (in distribution) to F, and thus F is
determined. This is a nontrivial result and requires care in verification. The
following heuristic argument lends plausibility to the result. First note that,
for large n, E(X, :n) = F- '(r/n) [this is plausible since if n --> 00 and r ->
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so that V (r/n — p) —> 0 then 1W [Xr: n — F- '(p)] 4 N(0, p(i — p))]. It fol-
lows that for any x with F* defined previously,

1 n

F* (x) = n E 1(E(^'r:n ) 5 x)
i	 l

n

n ^ 1(F-1( n ) 5 x ),

but this last expression is simply an approximating sum to a Riemann integral
on (0,1). Thus

F,*(x) = f 11(F -1 (u) 5 x) du

= f 11( u 5 F( x ) ) du

= F(x).

The second approach to verifying that {µi : n} determines F - ' involves the
concept of a complete family of polynomials in (0, 1). It is well known that if

I '	 (6.3.2)x kg{x) dx = 0,	 k = 0,1,2,...,	 {
0

then g(x) = 0 a.e. on (0, 1) and, if g is right continuous, it will be thus zero
everywhere on (0, 1). This result is often described as an indication that the
class of polynomials (1, x, x 2, ... } is complete in the space of integrable
functions on (0, 1). Of course, other families of polynomials are complete,
and, in fact, even certain subsequences of {x"} are complete. A famous result
of Muntz says that {x"'} is complete iff ET_ 1 nß ' = 00. Let us review how these
completeness results allow us to determine F - ' from a knowledge of the
moments of the order statistics (p i , n). First note that there is a great deal of
redundant information in the full array {µ i : n}. For example, the triangle rule
(5.3.13) with m = 1 becomes

( n — !)f1i:n + Lµi + I: n = nN i:n -1' (6.3.3)

Thus, within the little triangle formed by the three order statistics moments
appearing in (6.3.3), knowledge of any two determines the third. It thus
follows readily that the full array (1.1, i: ,} will be completely determined if we
know just one term in each row. It turns out to be convenient to focus on
maxima. The result then takes the form of Theorem 6.3.1.
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Theorem 6.3.1. Let F and F' be arbitrary distributions. For n = 1, 2, ...
denote by Xn  n (respectively, X; : n ) the maxima of n i.i.d. random variables
with common distribution F (respectively, F'). Assume E(X,, :n ) = E(X;, :n ),
n = 1, 2, ... (assume finite). It follows that F(x) = F'(x), x E R.

Proof. We have f F - '(u)u'- ' du = joF' - '(u)u" -1 du for n = 1, 2, ... ;
i.e., OF -1(u) — Fi - '(u)]u' du = 0, j = 0,1, 2, .... But by completeness of
u', it follows that F- '(u) = F' - '(u) and thus F = F'. ❑

The more general results are that

(0 (AL k(n): n}n = I determines F (i.e., one 1.1,,,„ from each row).
(ii) {µk : n }i 1 determines F where k is fixed and E; _ i n ' = 00.

Curiously, it is known to be possible in (i) to delete µ  and still
characterize F, but it is not known whether just the tail of the sequence
11k(n):n would suffice. Huang (1989) provides a clear survey of this and related
problems.

For example, if we know that µ; : n = i/(n + 1) for every i and n, then
we can conclude that F is Uniform(0, 1). We of course only really need to
know that A I : n = 1/(n + 1), n = 1, 2, ... , or more esoterically that u / ==
1/(n 1 + 1), i = 1, 2, ... for some sequence n, with E0. l n^ ' _ 00. Other
examples are discussed in Exercises 2 and 3.

Rather than being given the actual moments µ i : n , we might be given some
interrelations among them. Again we may ask to what extent information of
this nature can characterize F. For example, we might be given information
about expectations of certain spacings. It is not hard to verify using the
triangle rule that knowledge of the expectation of just one spacing for each
sample size n = 2, 3, ... is sufficient to determine F up to possible transla-
tion (Exercise 4). It seems doubtful that knowledge of the expectation of just
one spacing for each of a subsequence (n 1) of sample sizes will pin down the
distribution F (even assuming Er_ 1 nß ' = oo). However, a counterexample
does not leap to mind.

Any set of information which will enable us to complete or essentially
complete the triangular array {µ ; : n} will, of course, suffice to determine F.
More general expected spacings, ratios of means of order statistics, means of
functions of order statistics, all are potential fodder for the characterization
mill. As a final example we may ask: For which distributions F is it true that

n-1
ttn:n — N'l:n	 n + 1

	 n = 2,3,...? 	(6.3.4)

Rephrased, is knowledge of the expected range for every sample size ade-
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quate to determine F? Note that if F(x) satisfies (6.3.4), then so does
F(x + c), for every c. So we may without loss of generality assume /1 1;1  = 0
in addition to (6.3.4). Now it is clear that (63.4) is satisfied by order statistics
from a Uniform( — Z, 2) distribution. Unfortunately, it is also satisfied by a
broad spectrum of distribution functions. To see this, consider the following
question. Under what circumstances (i.e., for what function h) will the
inverse distribution function

F'(u) = u — i + h(u)

satisfy µ 1 :1 = 0 and (6.3.4)?

6.4. CHARACTERIZATIONS BASED ON DISTRIBUTIONAL
RELATIONSHIPS AMONG ORDER STATISTICS

The classic example of this type was first explicitly stated by Desu (1971),
although it was surely known much earlier. He observed that for samples
from an exponential distribution, one has

d
nX1:n — X1:1^ n = 1, 2, . . . .	 (6.4.1)

Obviously a distribution degenerate at 0 satisfies (6.4.1) but, except for this
trivial case, Desu argued that (6.4.1) can only be satisfied if X is an
exponential variable.

The argument used is as follows. First (Exercise 5) it is clearly impossible
to have (6.4.1) satisfied unless F(0) z 0; i.e., the Xi's must be nonnegative
random variables. Then if (6.4.1) holds for two integers m and n, we have

and

f x

LF( n )] n — F( x )

(6.4.2)

(m
F — )Jllm = F(x)	 (6.4.3)

L

for every x. If we replace x/m by y in (6.4.3) and rearrange, we conclude
that

F (mY ) = (T.(Y))m

and rearranging (6.4.2) we have

F(

1
nx) = (F(x)) 1/n .
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Combining these equations, we may conclude that for every positive rational
number q we have

F(qx) = [F(x)] 9 .	 ( 6.4.4)

In particular, (6.4.4) holds for x = 1. It is not hard to verify that P(1) must
satisfy 0 < F(1) < 1, to avoid degenerate solutions. Consequently, we may
define 8 > 0 by

F(1) =

and conclude that our survival function satisfies

F(q) 
= e-q/e	 (6.4.5)

for every positive rational q. Since the rationals are dense and since F is
right continuous, (6.4.5) must continue to hold for every real positive q, and
the exponential character of the distribution is established.

A careful look at the proof suggests that we do not need to assume (6.4.1)
holds for every n. It is enough that it hold for two integers n 1 and n 2 which
are relatively prime and distinct from 1. What if (6.4.1) only is assumed to
hold for one value of n? For example, suppose we assume 2 X1:2  XI :I
What do the nonexponential solutions look like? The following construction
is possible. Pick an arbitrary positive number in the interval (0, 1), say S. Now
let g be an arbitrary right-continuous nonincreasing function defined on the
interval [1, 2] with the constraint that g(1) = 8 and g(2) = 3 2. Now extend g
to a function G on (0, co) by setting G(x) = g(x) on (1, 2] and using the
relation

G(2x) = [6( )[ 2 	(6.4.6)

repeatedly. Thus, use the values of G in (1, 2) and (6.4.6) to determine the
values of G in the interval (2, 4); then use their values and (6.4.6) again to get
the values of G in the interval (4, 8), etc. Note that also (6.4.6) can be
rewritten as

6(2) = [6( x)]'2 ,

so it can be used to determine values in the interval (2, 1), then (ä, 1), etc.
Formally, the function so constructed is given by

G(x) = [g(2 -)x)] 2' ,	 if 2' < x < 2i +I , j = 0, ± 1, ± 2,... . (6.4.7)
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Evidently, the function G is nonincreasing and right continuous with 6(0) = 1
and G(oo) = 0, and so is a valid survival function satisfying 2X1:2 d

 X1:1. It
will only be exponential if the original relatively arbitrary function g was
itself of the form g(x) = Sx(= e -X' °). If g is not of the form Sx, then the
function G will behave quite erratically as x approaches 0. It will be right
continuous, but it will not have a right derivative. If we put on the extra
regularity condition that the survival function should have a right derivative
at 0, then it may be verified that only exponential solutions are possible (see
Exercise 6).

A minor variation of the Desu theme involves an assumption that

X1:„  = Q -#- Ö„ X 1: 1

for every n. Distributions which satisfy this relation are known as min-stable
distributions. (Of course, there are also analogous max-stable distributions.)
We will meet them in our study of the asymptotic distribution of sample
extremes (Section 8.3). The only three possible distributions for X 1:1 can be
identified by referring to Theorem 8.3.5.

After our detailed analysis of the consequences of (6.4.1), we are in a
position to visualize the kinds of results to expect when other distributional
relationships are assumed to hold among order statistics. Suppose instead we
postulate that for some fixed i, j, m, n, and some fixed c (# 0, —1,1 to avoid
trivialities), we have

=CXj:m• (6.4.8)

What can be said about the common distribution F of the Xi 's? Recall that
= F-14,,). Consequently, if we denote the distribution function of

U : „ by Gi: „(x) (an incomplete Beta function, although that is not of
importance here), we can rewrite (6.4.8) in the form

Gi:„(F''(x)) = Gi:m( FI X )).	 (6.4.9)
c

Consequently, if (6.4.8) holds, then the common distribution F of the Xi's
must satisfy the following functional equation:

F(x) = (fi(F(X )), 	 (6.4.10)
c

where 4. = G;: ,', o Gj: „ is a continuous mapping from (0, 1) onto (0, 1). We
can actually write the right side of (6.4.10) as a composition of three
functions by introducing the trivial function S c(x) = x/c. Thus F = 4) c F o Sc

and the corresponding inverse F -1 satisfies F - ' = F-' c 4 -1 . This can
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be rewritten in the form

F -1 (u) = cF - '(II(u)),	 (6.4.11)

where r/i = fk - = GJ : ,',, o Gj : ". However (6.4.11) is well known as Schroder's
functional equation [see Kuczma (1968)]. Typically, such equations are dis-
cussed under smoothness regularity conditions. Before invoking such condi-
tions, we may speculate on the possibility of constructing "ugly" solutions to
(6.4.8) to convince ourselves that we do expect a need to invoke some
regularity conditions. We can in fact get such ugly solutions in a manner
entirely analogous to that used earlier to obtain (6.4.7). Pick an arbitrary
number So in (0, 1) and set F(1) = S o . Now without loss of generality assume
c > 1. Define S I by

SI = 400,

where ¢ is as defined following Eq. (6.4.10). Now set F(c) = S i [it is not hard
to verify that in order to have (6.4.8) hold with c > 1 we must have
So < S I < 1]. Now let i be an arbitrary nondecreasing right-continuous
function satisfying 77(1) = So and 77(c) = S I . Next define F by

F(x) _ 77(x), 1 <x < c,

and then extend F to the interval (c, c 2 ) by using (6.4.10), then to (c 2 , c 3 ),
etc. Analogously, use (6.4.10) to extend F to (c - ',1), (c -2 , c - '), etc. Finally,
set F(x) = 0, x 5 0. The result is a relatively arbitrary distribution function
with support on (0, 00) which will be a solution to (6.4.10). But it will be an
unsatisfactory solution, since the function misbehaves near 0. If we enthusias-
tically impose a differentiability condition on solutions to (6.4.10), then we
are led to the following simple one-parameter family of solutions (expressed
in terms of F- ' which will determine F):

F -1 (u) = co lim c"tfrI"I(u),	 (6.4.12)
n^ co

where IJr(" ) denotes the n-fold iterate of the function 'r defined fol-
lowing (6.4.11) and where c o is a positive real number (actually it is
(d/du)F- '(u)I u s o )-

There is a fly in the ointment here. The solution (6.4.12), although easily
verified to indeed satisfy (6.4.11), will be of limited utility unless we can
actually get a grasp of the form of 4I"I. Few functions have well-behaved
iterates. Bilinear functions [of the form (a + bu)/(c + du)] do and so do
functions of the form O. There are not many others. The situation is worse
than that, since not only do we need to have ii amenable to analytic iteration,
but also it must be of the form GJ:: ,'" ° G... In this sense (6.4.12) serves
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essentially as an existence theorem. If you stumble on a distribution which
satisfies (6.4.8), then subject to differentiability, it is unique. The cases
Xl : n 

d cXi  m and Xn   d= cX,, : m [which are essentially equivalent to (6.4.1)]
remain our prize examples.

With some trepidation we may now explore the consequences of distribu-
tional relations between linear combinations of order statistics. Suppose that
we know, for certain constants a i . n , bj : m , that

n	 d rm

ai:nXi:n — ` bj:mXj:m•
J-1

(6.4.13)

What can be said about F, the common distribution of the X1's? Note that
we assume that the Xi's in both samples have the same distribution F. First
it should be determined that the problem at hand is not vacuous. Are there
any interesting (nontrivial) cases in which a relation such as (6.4.13) does
hold? There are indeed several, though there are not as many as one might
expect. First consider samples from exponential distributions. In such a case
spacings are again exponential and we can write

/
Xj :n — Xj -1:n — C(l+J ^ 

m , n)(Xi :m — X)	 (6.4.14)

for a suitable constant c(i, j, m, n), clearly an instance of (6.4.13). Is (6.4.14)
enough to guarantee a common exponential distribution for the X,'s? An-
other example involves samples from a uniform distribution. Again focus on
spacings. One may verify that in such a case we have

/

Xj+k:n — Xj :n — l Xi +k:n — Xi:n) ,
(6.4.15)

since both sides will be scaled Beta random variables. Does (6.4.15) charac-
terize the uniform distribution?

Our final example involves observations from a logistic distribution F(x) =
(1 + e -x/°) - '. It is true, though far from obvious [see George and Rousseau
(1987)], that in such a setting

d
X1:3 + X3:3  2X2:3• (6.4.16)

Is this only true for logistic samples?
Two comments should be made to focus on potential difficulties inherent

in trying to solve (6.4.13). First we may note that (6.4.8), which we were only
able to incompletely resolve, is a special case of (6.4.13) and, second, exact
distributions of linear combinations of order statistics are generally not easy
to write down. The exceptional case involves spacings and higher-order
spacings. For these we can at least write a simple integral expression for their
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distribution. Since two of our examples involved higher-order spacings, it is
reasonable to first focus on such statistics. So for the moment consider the
simpler condition

Xi +k:n  Xi:n 

d
 C [ Xj + l:m Xj:m] ; (6.4.17)

i.e., two higher-order spacings have identical distributions up to scale change.
If we assume that the common distribution F of the Xi 's is absolutely
continuous with density f, then (6.4.17) implies equality of the corresponding
densities of the random variables. Thus we have

f  [F(u)]`'[F(u + x) - F(u)] k- '
(i - 1)!(k - 1)!(n - k - i)!

X[1 - F(u +x)] n - i—kf(u)f(u + x) du

m !

( j - 1)!(1 - 1)!(m - 1 -j)!

0.r	
l
l-1 

[1
	m-j -!

X ^ f ^[F(u)] j1 [FI u + 	 - F(u)1 
11

 - F(u + ^ 
)1
l

X f(u) f u + -
c

) du. (6.4.18)

This expression is quite complicated. Only certain special cases of it have
been resolved in the literature. The obvious modification in which we restrict
attention to true spacings, i.e., k = 1 and 1 = 1, is more appealing. The
simplified version of (6.4.18) may then be written as

r [F(u)]' - 'f(u)[F(u+x)]" 	I f(u +x)du
- ^

= c' f [F(u)r'f(u)[F(u + -
c

)]	 f(u  + -
c

)  du (6.4.19)

for a suitable constant c'. It is obvious that (6.4.19) can be satisfied by an
exponential distribution, for then F(u + xX= e -(" +x'° ) factors into a func-
tion of u and a function of x. The other functions involving u + x and
u + x/c also factor, and eventually the result is verified for suitable c and c'.
Nonexponential solutions do exist. For example, if n = m, then uniform
spacings for differing i and j's will satisfy (6.4.20) (each such spacing has a
scaled Beta distribution). If F has (0,00) as its support, it is quite plausible
that an assumption like (6.4.19) or even (6.4.18) should be enough to
guarantee that F is exponential. Only a few well-behaved cases have been

n!
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settled. For example, it is true that if X1. n — Xj -1: n 
g

 X1: n -j + 1, then
provided F is nondegenerate and is not a lattice distribution, it must be
exponential [Rossberg (1972)]. His proof is nontrivial. If we are willing to
assume a monotone hazard rate, then an easier proof may be devised
(Exercise 7). Another result of this type states that under mild conditions,
Xj,n — Xj _ I : n = cX1: I is enough to guarantee a common exponential distri-
bution. Several of these results can be related to a currently active research
area involving integrated Cauchy functional equations. Recall the Cauchy
functional equation (on R+) is of the form

f(x + y) = f(x) f( y),	 b+x, y> 0,	 (6.4.20)

and, subject to mild conditions, has as its only solutions functions of the form
e -"x Suppose that instead of requiring (6.4.20) to hold for every x and y, we
ask that it hold on the average for every x. Thus, for some distribution G we
ask that

fo f(x + y) dG( y) = fo f(x)f(y) dG( y)

= cf(x).	 (6.4.21)

Recent articles by C. R. Rao and his colleagues have focused on character-
izations using the integrated Cauchy equation (6.4.21). Equation (6.4.21)
clearly has f(x) = e-zle as a solution. Under mild conditions, it may be
verified that only such exponential solutions exist. If we write the condition
Xj : n — Xj -1 : n = X l : n -j + 1 in terms of the common survival function F of the
X,'s, it becomes

f ^^F(z + u)^ ", + 1 
dFj-I:n(u) = [F(x)i

n -j+1 .
	(6.4.22)

Thus [F(x)]n -j +1 satisfies the integrated Cauchy functional equation and
consequently F(x) = e-x1° for some 0. It is possible that other special cases
of (6.4.19) can be resolved by relating them to variants of the Cauchy
functional equation. They all (when written in terms of the survival functions
of the spacings) reduce to expressions of the form

„	 a 	11 ß
fo [F_( x + u)^ dG 1(u) = 4:Q [P( 

^x 
+ u)J dG2(u) ,

with c # 1, and it seems unlikely that nontrivial nonexponential solutions
could exist.
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6.5. CHARACTERIZATIONS INVOLVING DEPENDENCY ASSUMPTIONS

Our focus in this section is on the consequences of certain dependency
assumptions among order statistics and functions of order statistics. Two
peculiar properties of exponential samples may be used to set the stage for
our discussion. For an exponential sample, any two nonoverlapping spacings
will be independent. Is such the case only for the exponential distribution?
Again, for an exponential sample, the regression of Xi: ,, on Xi: ,, (j > i) is
linear. Can this happen in other settings?

The simplest case in which we can study these phenomena involves a
sample of size 2. Suppose we know X1:2 and X2:2 - X1:2  are independent.
What can we conclude about the common distribution of the X 1 's? For
simplicity, let us focus on the case where the X,'s have a continuous strictly
increasing distribution function. In Exercise 8, it will be verified that discrete
solutions (geometric) do exist. When F is continuous and strictly increasing
with support (0,00), the argument is straightforward following Galambos and
Kotz (1978, pp. 46-47). For each positive y (which is a possible value of X1:1
since F is strictly increasing), we then may write

P ( X2:2 - X1:2 > XIXI:2 = y) = P ( X2.2 - X1:2 > x) (6.5.1)

for each x > 0. The left-hand side can be written as F(x + y)/F(y) (using
the Markov property of order statistics), and the right-hand side of (6.5.1)
must be equal to the limit of the left side as y-' 0, i.e., F(x). Consequently,
F(x + y) = F(y)F(x) for every x, y > 0. So F is a right-continuous (actually
continuous) function satisfying the Cauchy functional equation and, hence, is
necessarily of the form a -x/8. Since the condition "X2:2 - X1:2 and X1 : 2

are independent" is unaffected by change of location, the final result is
slightly more complicated but straightforward.

Theorem 6.5.1. If F is continuous and strictly increasing on its support
and if X2:2 - X1:2 and X1:2 are independent, then F(x) = e -(x -µ>/B,

x > µ for some positive 6 and real A.

It is possible to verify that the only other possible cases in which X2:2 -
X1: 2 and X1: 2 are independent are the geometric random variables with
general support sets discussed in Exercise 8. So only exponential and geomet-
ric solutions are possible.

If we move to larger samples, we are led to conjecture, for example, that
independence of X;: ,, and E;=ic .,(X; _,.., : ,, — X) should be enough to
characterize the exponential distribution among continuous distributions.
Rossberg (1972) was able to prove this result but needed a technically
complicated argument involving characteristic functions. It is undoubtedly
true, but probably difficult to prove, that independence of any two nontrivial
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functions of spacings is enough to guarantee that the common continuous
distribution of the Xi's is an exponential distribution.

Now we turn to possible regression characterizations. For an exponential
sample it is true that for j > i and x > 0

E(Xj: n lX;:n = x) = c + x.	 (6.5.2)

Is this true only for exponential samples? The special case i = 1, j = 2 was
first resolved in an article by Ferguson (1967). However, even more general
cases are quite straightforward. For simplicity, let us assume that F is strictly
increasing on (0, oo). Then for x > 0 (6.5.2) can_be written quite simply, taking
advantage of the representation E(Z) = f Fz) dz for any nonnegative
random variable Z. First note that using the Markov property of order
statistics

P(Xj:n — Xi:n > YIXf :n = x) = P(Y _ i :n - i > y)

where the Y's correspond to observations from the truncated distribution
F,,(y) = F(x + y)/F(x). Next use a representation analogous to (2.2.15) to
write

F(x +y)/F(x ) 	(n — i)1
P(Y

- i:n - i > Y ) = jo	 (i — 1 — 1)!(n — j)!
t"-j(1 — t )1 -1- I dt.

From this we obtain the following statement equivalent to (6.5.2). For every
x >0,

(°° (F(x +y)/F(x)lo
t) dt dy = c,

,/o Jo
(63.3)

where O(t) = [(n — i)!/(j — i — 1)!(n — j)!10 -j(1 — t)j - ' - '. It is not trans-
parent in general that (6.5.3) is enough to guarantee that F is exponential,
but it is easy when j = i + 1. In that case OW = (n — i)t" -i-I and (6.5.3)
can be written as

fo [F(x + y)/F(x)r' dy = c.

Multiplying both sides by [F(x)]" -i and setting z = x + y in the integral
yields

m
f [F(z)]" - ' dz = c[F(x)r.
x
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Differentiation of both sides of this expression (using the fundamental
theorem of calculus), yields a differential equation whose only solutions
correspond to exponential survival functions.

More generally one might consider linear regressions of the form

E(XJ:n 1Xi:n = x) = a + bx,	 (6.5.4)

where a >_ 0 and b >_ 1. Exercise 9 focuses on such problems when j = i + 1.
The problem is open when j > i + 1.

There are, of course, discrete solutions to (6.5.2). They turn out to be
geometric, so there are no surprises in that direction. The general result is
that independence of functions of spacings or lack of correlation of functions
of spacings is a rare phenomenon. When it is encountered, it is almost always
associated with exponential or geometric random variables.

6.6. CHARACTERIZATIONS INVOLVING SAMPLES OF RANDOM SIZE

Rather than a fixed number n of observations X I , X2 , ... , we now consider
cases where a random number N of X's are observed. Here N is a positive
integer-valued random variable with

P(N = n) =pn 	(6.6.1)

and corresponding generating function

PN(s) = E pnSn.
n=1

(6.6.2)

Attention will be focused on the corresponding sample extremes, in particu-
lar on the sample minimum; i.e.,

Y = min Xi ,	 (6.6.3)
i5N

since analogous results for the maximum are obviously obtainable. Generally
speaking, Y will have a distribution markedly different from the common
distribution of the Xi 's. Exceptions do occur. For a given choice of distribu-
tion for N [i.e., a given generating function PN(s)j, we may reasonably seek
out distributions for the X i 's such that

Y( =-- min Xi ) = aX + b.
isN

(6.6.4)
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Rather than try to present a complete solution to this problem, let us
focus on the special case where b = 0 and where we assume that the
common support of the Xi 's is (0, co). Thus our scenario is as follows. N is
assumed to be a nondegenerate variable with possible values 1, 2, ... , the
X1 's are i.i.d. positive random variables, and for some a > 0

Y
d 

aX. (6.6.5)

By conditioning on N we find a relationship between the survival functions
of X and Y. Thus,

00

Fy(Y) = E P(Y> yIN = n)P(N = n)
n =1
^

= E [FX(Y), n Pn
n =1

= Pz(Fx(Y)).

Consequently, (6.6.5) is equivalent to

Px(x/a) = Pz(Fx(x)).	 (6.6.6)

Aha! We have seen equations like this before; cf. Eq. (6.4.10). Denote the
inverse of Fx by FX' and (6.6.6) can be rewritten as

FX '(u) = aFx 1(Pz(u)). 	(6.6.7)

This, of course, is just like (6.4.11) (the Schroder equation), only now FX' is
decreasing whereas in (6.4.11) F- ' was increasing. As earlier, mild regularity
conditions yield a solution of the form

FX'(u ) = co Hill a nPr(u).
n

(6.6.8)

The classic example in which the iterates PP are available in closed form
corresponds to the case in which N has a geometric distribution, and the
corresponding distribution for X [and also Y in (6.6.5)] is log-logistic (see
Exercise 10 for the necessary details).

The equation min i , N X; = X + b can be reduced to (6.6.5) by exponenti-

ation; i.e., let X; = e x,, X' = ex, and a = eb. Thus, for example, one may
verify that a geometric minimum of logistic random variables is again logistic
but with a new location parameter (Exercise 10).

The logistic distribution has another curious characteristic property associ-
ated with samples of random size. Assume again that N is geometric and
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define Y = min i , N Xi and Z = max; s N X. Both Y and Z will be logistic
and, in fact, one may show that under mild regularity conditions

d
( min Xi ) = ^ max Xi ) + c

isN	 i<N

only if the Xi 's are logistic random variables (Exercise 11).

EXERCISES

1. Suppose that X 1 , ... , X„ are i.i.d. with common distribution function F.
Assume that E(X„ : „) = v„ and var(Xn : n) = Tn . Use the Tschebyscheff
inequality to obtain an upper bound for P(X > v + c), where c > 0.

2. Suppose that for each n, E(X„ : „)/E(Xn _ 1 : n _ 1 ) = c > 1. Determine the
common distribution of the X's.

3. Suppose that for each n, E(X„ : „/Xn _ i : n) = c" for some c > 1. Deter-
mine the common distribution of the X i 's.

4. Suppose that E(XX : n — X„_ 1: „) = 1/n, n = 2, 3, .... Determine the
common distribution of the X,'s.

5. Suppose that nX1: „ d= X1:1 for every n = 1, 2, .... Show that P(X 1 < 0)
= 0.

6. Suppose that 2X 1:2 = X1:1 and that F(x), the common distribution of
the Xi 's, has a right derivative at zero. Prove that F(x) = e - ' 1° for some
0 > 0.

7. Suppose that for some j < n we have XX : n — Xj _ I 	X  n _v4. 1 . As-
sume that F, the common distribution of the X,'s, has a monotone
hazard rate. Prove that F(x) = 1 — e -x/B, x > 0, for some 0 > 0.

8. Suppose that X 1 , X2 are i.i.d. nonnegative integer-valued random vari-
ables. Assume that X1:2 and X2 :2 — X1: 2 are independent. What can be
said about the common distribution of the Xi 's? Generalize to the case in
which the common support set of the Xi 's is of the form 0 < x 1 < x 2 <
x3 < •	 .

9. Suppose that for some j < n, E(Xj + 1 : n I X j : n = x) = a + bx for some
a >_ 0 and b >_ 1. Under suitable regularity conditions determine the
common distribution of the Xi's.
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10. (a) Let X1, X2, ... be i.i.d. positive random variables and assume that
N, independent of the Xi's, has a geometric distribution. Define
Y = min,  N X; and suppose that Y = aX1 for some a > 0. Verify
that under mild regularity conditions the Xi's have a common log-
logistic distribution.

(b) With the same setup as in part (a) except that we no longer assume
that the X,'s are positive random variables, discuss the implications
ofYa a+X1 .

11. Suppose X1 , X2, ... are i.i.d. random variables and that N, independent
of X,'s, has a geometric distribution. Discuss the implications of

d
( min Xi) = t max Xi) + c.

r 5N	 r5N

12. Let X1 , X2 be independent identically distributed random variables with
common distribution function

F(x) = 1 — e -X[1 + 7r -2 (1 — cos 2irx)],	 x > 0.

Verify that X2.:2 — X 1 : 2 has a standard exponential distribution.
(Rossberg, 1972)

13. Suppose X1 , X2 are i.i.d. absolutely continuous positive random vari-
ables. Identify the nature of their common distribution under the as-
sumption that X 1 i 2/X2

:
2 and X2,2 are independent. Describe an analo-

gous characterization involving n independent Xi 's.
(Ahsanullah and Kabir, 1974)

14. Suppose X1 , X2, X3 are i.i.d. positive absolutely continuous random
variables. Assume that X2.3 — X1.3  X1.2 and X3:3 — X1.3 

a 
X2:2-

Prove that Xi 's are exponentially distributed.
(Ahsanullah, 1975)

15. Suppose that f is a right continuous function defined on R + which
satisfies the Cauchy functional equation (6.4.20). Prove that f(x) = c"
for some c E R+.

16. Suppose that f, g, h are real-valued right continuous functions defined
on R+ satisfying f(x + y) = g(x)h(y), Vx, y > 0. Determine the nature
of the functions f, g, and h.

(Pexider, 1903)

 



CHAPTER 7

Order Statistics in Statistical
Inference

7.1. INTRODUCTION

Order statistics play an important role in several optimal inference proce-
dures. In quite a few instances the order statistics become sufficient statistics
and, thus, provide minimum variance unbiased estimators (MVUEs) of and
most powerful test procedures for the unknown parameters. The vector of
order statistics is maximal invariant under the permutation group of transfor-
mations. Order statistics appear in a natural way in inference procedures
when the sample is censored. They also provide some quick and simple
estimators which are quite often highly efficient. We now explore some basic
facts about the use of order statistics in statistical inference (in estimation,
prediction, and testing of hypotheses). We carry out the discussion assuming
that we are sampling from an absolutely continuous population. However,
some of our results hold even when the population is discrete, and this will
be pointed out at appropriate places.

We begin with a discussion of various types of censored samples in Section
7.2. These include Type I and Type II censoring and some modifications to
them. In Section 7.3 we look at the role of order statistics as sufficient
statistics, especially when the range depends on the unknown parameter 0.
Optimal classical inference procedures would then depend on order statis-
tics. We also look at the amount of Fisher information contained in a single
order statistic or a collection of order statistics when the sample comes from
an absolutely continuous distribution. We take up in Section 7.4 the question
of maximum-likelihood estimation of B when the data is a censored sample.
Through examples, we look at the finite sample as well as asymptotic
properties of 8, the maximum-likelihood estimator (MLE) of 0. We discuss
the problem of estimating the location and scale parameters using linear
functions of order statistics (known as L statistics) in Section 7.5. Following
the work of Lloyd (1952), we provide best linear unbiased estimators (BLUE)
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of these parameters. In Section 7.6 we discuss situations where prediction of
order statistics is important and present the best linear unbiased predictor
(BLUP) of an order statistic. Section 7.7 describes how order statistics can be
used to provide distribution-free confidence intervals for population quan-
tiles and tolerance intervals. A brief discussion of the role of order statistics
in goodness-of-fit tests is provided in Section 7.8. In the last section we look
at some important uses of order statistics in monitoring data for possible
outliers, and in forming robust estimators which are less susceptible to model
violations.

7.2. TYPES OF ORDER STATISTICS DATA

Let us consider a life-testing experiment where n items are kept under
observation until failure. These items could be some systems, components, or
computer chips in reliability study experiments, or they could be patients put
under certain drug or clinical conditions. Suppose the life lengths of these n
items are i.i.d. random variables with a common absolutely continuous cdf
F(y; 0) and pdf f( y; 0), where 0 is the unknown parameter. Then we have a
random sample Y„ ... , Y from the cdf F(y; 0). Note, however, that these
values are recorded in increasing order of magnitude; that is, the data appear
as the vector of order statistics in a natural way. For some reason or other,
suppose that we have to terminate the experiment before all items have
failed. We would then have a censored sample in which order statistics play
an important role. Let us now look at some prominent classifications of
censored samples discussed in the literature.

Type I (Time) Censoring

Suppose it is decided to terminate the experiment at a predetermined time t,
so that only the failure times of the items that failed prior to this time are
recorded. The data so obtained constitute a Type I censored sample. It
corresponds to right censoring in which large observations are missing.
Clearly, the number of observed order statistics R is a random variable; it
could even be 0. The likelihood function can be written as

L(e1r=y) = (n nf r)I f(Y1;0) ... f( yr ;e) {1 — F(t;9)} n
- r ,

y< y2 < •• <yr <t, 0 <r5n

= {1— F(t;9)} R ,	 r= 0, t <y 1 ,	 (7.2.1)

where y is the vector of observed order statistics.
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Having two distinct forms for L(0) complicates the study of the finite-
sample properties of the MLE of 0, as we shall show through an example in
Section 7.4.

Type II (Failure) Censoring

If the experiment is terminated at the r th failure, that is, at time Ye  n , we
obtain Type II censored sample. Here r is fixed, while Ye : n , the duration of
the experiment, is random. The likelihood function is

i
L(ely) = (n n. r)'  

f(yi;9) ... f(yr;e){1— F(yr;e) }n -

r,

y ^ < yz < ... < yr. (7.2.2)

As in the Type I censored case, the just-mentioned likelihood corresponds
to a right-censored sample; that is, large values are censored. One can have
left censoring wherein smaller values are censored or one can have censoring
of multiple regions. When there is just left and right censoring, the name
used often is double censoring. More general censoring schemes have been
discussed in the literature.

Random Censoring

With the ith item let us now associate a random variable C. called the
censoring time whose cdf Fe is free of 0. Define T; = min(Y, C,) and D; = 1
if Ti = Y and D. = 0 otherwise. Let us assume Y, and C. are independent,
and we observe (Ti , D,), i = 1 to n. Thus, each lifetime is censored by an
independent time, and we also know whether our observation is the life
length or the corresponding censoring time. This scheme is known as a
random censoring scheme and is very common in clinical trials. In such
experiments, patients enter into the study at random time points, while the
experiment itself is terminated at a prespecified time. The likelihood function
in this case can be written as

L(9lt,d ) = Fl {f( y,;9)[1 — Fc(yr)l)dlfjci)[ 1 —F(c,;6)}} 1 -d', (7.2.3)
r=1

where L is the pdf of C,.
If the C,'s are constants, say t, then (7.2.3) reduces to

L(elt,d) = rj f(y,;e) {1 —F(t;e))
n - r ,

i = 1
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y 1 , ... , y, < t; d, = 0,1 and Edi = r. In other words, we obtain a Type I
censored sample.

Progressive Censoring

Of the n items put on test, suppose we remove n 1 unfailed items at time t 1 ,
n 2 unfailed items at time t 2 , ... , where t l < t 2 < • are prespecified
times. The experiment will be terminated at time ti if n ; exceeds the number
of unfailed items remaining at that time. This is known as a Type I progressive
censoring scheme. A Type II version of this is also discussed in the literature.
In that scheme at the time of r ith failure, n, unfailed items are removed from
the study (i z 1). This is continued until each item is taken care of either due
to its failure or due to its removal from the experiment. Obviously the
likelihoods are more complex; but the Type II case is tractable. Lawless
(1982, pp. 33-34) provides for some details about such schemes.

We can discuss censored samples from discrete distributions also; but, as
we discovered in Chapter 3, the likelihood would be more complicated than
the ones displayed above.

73. ORDER STATISTICS AND SUFFICIENCY

The concept of sufficiency is fundamental in classical parametric inference
procedures. Sufficient statistics lead us to MWEs, optimal tests, and confi-
dence intervals. Order statistics, being sufficient, play an important role in a
variety of such procedures. We now discuss the role of order statistics in data
reduction.

Let us begin with the vector of all order statistics Y= (Y 1 : „, ... , Y„ : „)
from a random sample of size n from the cdf F(y; 0). The parameter 0 may
be real or vector valued and belongs to Ii, the parameter space. When F is
absolutely continuous, the conditional joint distribution of Y1 , Y2 , . . . , Y„
given Y1: „ = y1 , . • • , Yn : n = yn is easily seen to be

1
P (Y1 = yi , ...,Y„ = yi„ 1Y1:n = y1) ... ,Yn:n = yn) — I

where (i i , i 2 , ... , i„) is a permutation of (1, 2, ... , n) and y 1 < • • • < y„.
When F is discrete, and Y1: „, ... , Y„ :„ have ties such that there are only k
distinct y i's with frequencies n„ ... , nk , one would have

P(Yl =yil,...,Y„ = yi„l Y1:n = y1 ,.
. . , Yn:n = yn)

nl ! n2 !... nk !

n!

Hence, in either case, the conditional distribution of the sample is free of 0.
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Thus, Y is sufficient for 0. For some distributions Y is in fact minimal
sufficient. For example, this is the case when F is a Cauchy cdf with location
parameter 0. Other examples include the logistic and Laplace distributions
(Lehmann, 1983, p. 43).

The Role of Sample Extremes

A subset of Y, notably either or both of the sample extremes, may become
sufficient statistics when the range of the distribution depends on 0. Such a
situation is referred to as a nonregular case in the literature. Early investiga-
tion regarding the existence of a single sufficient statistic for a single
parameter B in the nonregular case was undertaken by Pitman (1936). His
work was followed up by Davis (1951) and Huzurbazar. The latter's work is
collected in Huzurbazar (1976). We now follow that presentation to get a
general idea about sufficiency and minimum variance unbiased estimation in
the nonregular case.

Let F(y; 0) be absolutely continuous with range (a(0), b(0)), where 0 is a
real-valued parameter. Let us assume both a(0) and b(0) are differentiable,
monotonic in opposite directions, and a(0) < b(0) for all 0 E Cl. Then, a
necessary and sufficient condition for the existence of a single sufficient
statistic for 0 is that

f(y; e) = g(6)h(y), a(0) < y < b(9), e E 11.	 (7.3.1)

When a(0) decreases and b(0) increases, the sufficient statistic is

T = max(a '(Y,) , b - '{Y)).	 (7.3.2)

If a(0) increases and b(0) decreases, it will be

T = min(a -t (Y1: „), b - '(Y„ : „)).	 (7.3.3)

A single sufficient statistic does not exist if both the limits are monotonic in
the same direction. When a(0) is a constant, Y„ : „ or any one-to-one function
of it would be sufficient.

We now obtain the cdf of T given by (7.3.2). Consider

FT(t) = P(T _< t)

= P(a - '(Y1 .,) < t, b - '{Y ) < t)

= P(Yi: „ >_ a(t), Y 5 b(t))

= {F(b(t);0) - F(a(t);9)) „

= (g( 0)J
 ncr)

h(y) dy
at)

n
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on using (7.3.1). Hence,

FT(t) = { g( 0)/g( t)} „ , (7.3.4)

since f, ))g(0)h(y) dy = 1 for all 0. The condition a(0) 5 Y1  s Y„  5 b(0)
yields T 5 0. Further, since a(t) < b(t) whenever FT(t) > 0, T z to where to

is the solution of the equation a(to) = b(to ).

EXAMPLE 7.3.1 (the uniform distribution). Let Y be Uniform(0, 0), 0 > 0.
Here a(0) is a constant. The sufficient statistic T = 1', :n and is known to be
complete. [See, for example, Hogg and Craig (1978, pp. 354) for a definition
of completeness.] Hence, the unique function of T which is unbiased for 0
is its MVUE. Now FT(t) = (t/0)„, E(T) = n0/(n + 1), and, hence, 9„ =
(n + 1)T/n is the MVUE of 0. It is also known that a uniformly most
powerful test exists for testing Ho : 0 5 00 against the alternative H 1 : 0 > 00 .
Since the joint pdf of Y has a monotone likelihood ratio in Y  „ , the optimal
test is based on the sample maximum and rejects H o if it is too large.

EXAMPLE 7.3.2. Let Y be Uniform( — 0, 0), 0 > 0. Here a(0) is —0,
which is decreasing while b(0) = 0 is increasing. Further g(0) = (20)-  and
h(y) = 1. The sufficient statistic, T, given by (7.3.2), is max( X„ : „ ). Its
cdf, obtained from (7.3.4), is FT(t) = ct /con, 0 5 t s 0. In other words, T
behaves like the sample maximum from a random sample of size n from
Uniform(0, 0). Hence, one can use Example 7.3.1 to obtain optimal statistical
procedures that are based on T.

EXAMPLE 7.3.3. When Y is Uniform(0, 0 + 1), a(0) and b(0) are both
monotonically increasing. Hence, a single sufficient statistic does not exist. In
this case (Yl : „, Y„ : „) is minimal sufficient.

The sufficient statistic T, given in (7.3.2), can be shown to be complete. If
g(0) is differentiable, the MVUE of 0 is given by 0„ = T — g(TXng'(T)) -1

(Davis, 1951; see Exercise 3). In Example 7.3.2, one would get 9„ = (n +
1)T/n, a fact we observed via Example 7.3.1.

The cdf of T derived in (7.3.4) comes in handy in obtaining confidence
intervals for 0. Note that {g(0)/g(T)}' is Uniform(0, 1) and, hence, can be
used as a pivotal quantity for this purpose.

Fisher Information Measure

Let Y be an absolutely continuous (discrete) random variable whose pdf
(pmf) f(y; 0) contains the real-valued parameter 0. Under certain regularity
conditions, the Fisher information contained in the random variable Y about
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0 is defined to be

(a tog f(Y;0) )2
40) = E

80

= — E /a 2 log f(1'; 0) )Illl 	ae 2
(7.3.5)

These regularity conditions include the assumption that S, the support of
f(y; 0), does not depend on 0 and that differentiation with respect to 0 and
integration with respect to Y are interchangeable.

The Fisher information appears in the Cramer-Rao inequality (informa-
tion inequality), which provides a lower bound for the variance of an
unbiased estimator. It also appears in the expression for the asymptotic
variance of the MLE of 0 based on a random sample from f(y; 0). The
sufficient statistic contains all the Fisher information in the sample.

A natural question is whether we can determine the amount of informa-
tion contained in a single order statistic or a collection of order statistics
from a random sample. While the recipe for deriving /y(0) is simple, the
details are messy in most cases. When Y is the vector of all order statistics
from a random sample of size n, on noting that

a 2 log f( Y:n;O) = " a 2 log f(Y; 0)
	z 	 — ^

1=1	 ae	 i=1	 ae 2

it follows that !y(0) = nly(0) where IY(0) is the information in a single
observation. This is true even when F(y; 0) is a discrete cdf. But when Y
consists of only a subset of the entire vector of order statistics, determination
of the information is harder. Let us look at two examples.

EXAMPLE 7.3.4 (the exponential distribution). Let Y be Exp(0); i.e.,
f(y; 0) = 8 - to -y/e, y > 0. Then, 4(0) = 1/0 2 . Let us compute the informa-
tion contained in a single order statistic, Yr:n . Since

fr:n(y; 0 ) — (r — 1)!(n — r)! 0 (1 — e y/e) r - 1 e -(n- r +l)Y/B,

a2 log fr:n(y;0) 	1	 2	 y	 2(r— 1) y	 e -y/e

002	 — 0 2	 02(n — r + 1) 9+ 
0 2 	0 (1 — Cy/B)

	(r — 1) y 2	 e -y/e

02	
 (312

 0 ) (1 — — y/B 
2	 (7.3.6)

e	 )
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on simplification. Hence for r z 3, on recalling (7.3.5), we can express the
Fisher information contained in 11, ; „ as

1	 2(n—r+1)	 2(n— r+ 1)
( 0) = B2 + 02	 E(X► :n) 02

	E(X►-t:n)

n(n — r + 1) 	2
+ (r — 2)02 E(X•- 2

• n -1),

where Xi,n is the ith order statistic from a random sample from a standard
exponential distribution. On using the expression for µ; : n in (4.6.6), (7.3.7)
simplifies to

1	 1 n(n — r + 1 )_ _ 	  z	 2
Iy.:n(e) — 02 + 0 2 	r— 2	 (N-r -2:n -1 

+ rz 3.

(7.3.8)

Now recall, respectively, from (4.6.6) and (4.6.7), that µ r - 2.n -1 =
E:.: (n — i) -1 and Qr2 2:n-1 = Eiml(n — i) -2 .

When r = 1, since 171:n is exponential, Iy  (0) = 1/0 2. For r = 2, on
using (7.3.6) and taking the expectation, we obtain

(7.3.7)

1	 2n(n — 1) °°	 1
nIy. ( 0) = 0 + 0	 ^2.	 2	 2	

10 (n +1) 3

1 	2n(n — 1)	 1
	 dr

0 2 	02	 Ix = o (n + x) 3

1
= e2 + (n — 1) 

n0 2
(7.3.9)

for large n. Also, for r >_ 3, with r/n = p, 0 < p < 1, we can approximate
(7.3.8) as

Iy.n(0) - 2 
+ 

n( 02p P) {log(1 — p)} 2 .	 (7.3.10)

First, let us note from (7.3.8) and (7.3.9) that the information contained in
a single order statistic exceeds the information contained in a single observa-
tion, except when the order statistic is the sample minimum. The right-hand-
side expression in (7.3.10) increases as p increases up to p0 , and then
decreases where p o is the unique solution of 2p = — log(1 — p). The value of
po is roughly 0.8. Hence, we can conclude that Iy, (0) increases for a while
and then decreases; it peaks around the 80th sample percentile, which
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Table 73.1. Fisher Information in Order Statistics From N(0, 1) distribution
for Sample Size 10

r 1	 2	 3	 4	 5	 6	 7	 8

ly J9) 3.110 4.763 5.755 6.345 6.622 6.622 6.345 5.755
lY (0) 3.110 4.970 6.260 7.238 8.005 8.617 9.107 9.495

contains about (2 + 0.65n) times the information contained in a single
observation.

While computations are involved for I y  (0), the information contained in
the data vector Y, = (Y I  ... , Yr: ,,) is easy to find. For this, first note that
T = E`a ,Y : n + (n — r)Yr :,, is the sufficient statistic. Since T can also be
expressed as E. 1(n — i +1)(,:n  — Y_I :n ), we conclude from Theorem
4.6.1 that it has a F(r, 0) distribution. On using (7.3.5), we can conclude that
IT(0) = r/0 2. Since the information contained in the sufficient statistic
matches that of the data, it follows that I y(0) = r/0 2 . Note that the uncen-
sored case was handled very easily earlier.

EXAMPLE 7.3.5 (the normal distribution). Let Y be N(0,1), where the
mean 0 is the unknown parameter. Then Iy(0), the information contained in
a single observation, is 1. In the case of a single order statistic Y, ; n , ly (0)
can be expressed in terms of expectations of some functions of the standard
normal pdf and cdf (see Nagaraja, 1983). Numerical integration would
be necessary to evaluate it. Table 7.3.1 gives the values of I y (0) and
IY (0) where Yr = (YI : n , ... , Yr : n ) for n = 10. The latter was computed by
Mehrotra, Johnson, and Bhattacharyya (1979). Note that I y (0) = ly + ^ (0)
by the symmetry of the normal pdf, and the information contained in a single
order statistic always exceeds the information contained in a single observa-
tion. Further, the first half of the sample contains more than 80 percent of
the information.

7.4. MAXIMUM-LIKELIHOOD ESTIMATION

Functions of order statistics appear as maximum likelihood estimators (MLEs)
of the parameter 8 either when S, the range of the parent distribution,
depends on 0 or when the sample is censored. Instead of having a general
discussion on the finite sample and asymptotic properties of 9, the MLE of 0,
we look at several examples to highlight various aspects of MLEs based on
order statistics.

When the sample is censored, the likelihood equation is 3 log L/30 = 0,
where L is given by (7.2.1) for the Type I censored sample, and by (7.2.2) for
the Type II censored sample. It does not yield closed-form solutions for most
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distributions. In these cases the MLE has to be obtained through numerical
methods, which can be very computer intensive. In both these cases, 9 is
consistent for 0, and 0, appropriately normalized, is asymptotically normal
under certain regularity conditions. In the Type I censored case, a simple
proof of these facts may be found in Borgan (1984), and for the latter case,
Halperin (1952), and more recently Bhattacharyya (1985) provide a proof of
the asymptotic properties of 0. To summarize, 0 4 0 and (9 — 0) is asymp-
totically N(0,1/1(0)), where 1(0) is the Fisher information contained in the
likelihood given by 1(0) = -E(a 2 log L/a0 2 ). Some detailed discussion of
the MLEs for several common distributions may be found in Lawless (1982).

EXAMPLE 7.4.1 (the uniform distribution). Let Y be Uniform(0, 0). With
a complete sample, the MLE is 0 = Y. Thus, 8 is a complete sufficient
statistic, and (n + 1)8/n is the MVUE of 0. Since the range of the distribu-
tion depends on 0, the regularity conditions which are sufficient to ensure the
normality of 9 do not hold. Let us see what happens to 9 in this example.
Consider

(Yn:n

0/n
0 5y)=(FI0(1+n^jJ;0)^ „

0,	

J y < - n,

//	 y n_ !1+ -) , -n 5yG0,
``	 n
1,	 y >0.

Thus, P{n(B - 0)/0 5 y) -0 e"", y 5 0. This limiting cdf is that of -X where
X is standard exponential. As we see later in Section 8.3, this is one of the
three possible limit distributions for the sample maximum. The normal
distribution is not one of them.

With a Type II censored sample where only the first r order statistics are
observed, 8 = nYr : „/r. If r = [ np], 0 < p < 1, 8 is asymptotically normal
(Exercise 7).

EXAMPLE 7.4.2. Let f(y; 0) = 1, 0 5 y 5 0 + 1. Here B is not unique,
since it can be any point in (Y„ : „ - 1, YI : „). Thus, the MLE is of the form
9 = c(Y„ :„ - 1) + (1 - c)Y, : „ , 0 < c < 1 and, hence, its asymptotic distribu-
tion depends on the choice of c. However, 0 4 0. When c = 0.5, 0 becomes
unbiased, and it can be shown to be the BLUE of 0. (See Exercise 12.) Refer
to Sarhan and Greenberg (1959) for more details.

EXAMPLE 7.4.3 (Type II censored sample from the exponential distribu-
tion). Suppose we observe Y t : „ , ... , Yr :„ (1 5 r 5 n) from the pdf f(y; 0)
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= 1/0e
-
y/ B, y >_ 0. The likelihood function is [recall (7.2.2)]

L( 0 1y) = nI 	Ir exp -( ^ yr + (n - r)yr) 9 >
(n - r)! B	 r_I

0.� y,  < ••• < yr ,

where y is the observed vector of order statistics. On differentiating the log
likelihood and equating the derivative to zero, and using the random vari-
ables in the solution instead of their observed values, we obtain

8 = Ei= 1Y:n + (n - r)Yr:n	 Li=1( n — 1 + 1 )(Y:n — 
Y —l:n)_

r	 r
(7.4.1)

as the MLE of 0. (How do you know that the solution really corresponds to
the maximum value of the likelihood?) From (7.4.1) and Theorem 4.6.1 it is
clear that r9/0 has F(r, 1) distribution. This fact can be used to carry out
tests or construct confidence intervals for 0. It also means that 6 is an
unbiased estimator of 0 and 16'0' — e)/9 (4 N(0, 1) as r co. Note that 6 is
a complete sufficient statistic for 0. Thus 6 is the MVUE of 0, and since it is
a linear function of the Y : n 's, it is also the BLUE of 0. In Example 7.3.4 we
have seen that Ie(8), the Fisher information contained in 6, is r/02 . It is a
linear function of r and is free of n.

The quantity r6 = E; I Y :n + (n - r )Yr : n represents the total time on
test when the experiment was stopped at the rth failure. This statistic plays
an important role in the reliability literature.

EXAMPLE 7.4.4 (Type I censored sample from the exponential distribution).
From (7.2.1), we have

= (n
nl r)

 9 
exp( -

B1(
^y	

J
; + (n -r)t) r,

^	 rL(B)	 ' —I

r >0, 0<y l < •••
e -nr/e ^ 	r = 0,

<yr< r,

where t is the censoring time. If r = 0, the likelihood is monotonically
increasing and, hence, 6 does not exist. But the probability of such an event,
e -n`/B, decreases with n. Conditioned on the event that R> 0, the MLE is
given by

R 1Y:n + (n - R)t
0-	 •

R	
.
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The exact distribution of 9 is complicated since R is random. See
Bartholomew (1963) if you are curious about its pdf. It is, however, asymptot-
ically normal. Another alternative to using 8 is to use the distribution of R
(binomial) to obtain an MLE of 0. Since R is Bin(n, 1 - e - `/B), the MLE
based on R would be B* _ -t/log(1 - R/n). Bartholomew (1963) notes
that inferences based on 8* are highly efficient when compared to those
based on 6 whenever a -1/0 is not close to zero. As in the Type II censored
case, r9 represents the total time on test and 8 is asymptotically normal.

EXAMPLE 7.4.5 (the normal distribution). Suppose we have a Type I
right-censored sample from a N(0,1) population. Assume that it consists of
the first r (> 0) order statistics which are less than t, the censoring point.
Then from (7.2.1) we have

L(0) = (n n' r)i j KFP(Yr - 0)}[1 - d)(t - B)1" r

where rp and 4:13 are the standard normal pdf and cdf, respectively. The
likelihood equation a log L/B0 = 0 reduces to

rB +
cp(t - 9)

1 - 4)( t - 8)	
E Y;:"•
i=1

(7.4.2)

This means the ML estimate has to be determined by an iterative process.
Cohen (1959, 1961) has facilitated this through a graph and a table, which he
developed for the maximum likelihood estimation of the mean and the
variance when both are unknown. Details about his procedure may be found
in Balakrishnan and Cohen (1991, pp. 146-159).

When we have a Type II censored sample, the ML estimate satisfies (7.4.2)
with yr :,, replacing t. That is,

9(Yr:n - 8) 	 ►

r9 +	 - Di:n•
1 - 4)(yr:n-e)	 1=1

(7.4.3)

Here again, Cohen's work comes in handy. Since the failure rate function
which appears on the left side of (7.4.3) is messy, suggestions have been made
to replace it by its mean [Mehrotra and Nanda (1974)1 or by a linear function
of Yr : " - 8 [Tiku (1967)1. The resulting equation yields estimates of 0 known
as modified ML estimates in the literature. For more details about such
estimators one may refer to Tiku, Tan, and Balakrishnan (1986).
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7.5. LINEAR ESTIMATION OF LOCATION AND SCALE PARAMETERS

Linear functions of order statistics, known as L statistics, provide highly
efficient estimators of location and scale parameters. The general theory of
best linear unbiased estimation developed for linear models applies in a
natural way to produce estimators of these parameters which are the best
among unbiased L statistics. In this section we derive formulas for these
BLUEs based on the finite-sample properties of order statistics. We also look
at some examples. The asymptotic properties of L statistics are discussed in
Section 8.6.

Best Linear Unbiased Estimators

Let Y1 , Y2 , ... , Yn be a random sample from the absolutely continuous cdf
F(y; 0 1 , 0 2), where 0 1 is the location parameter and 0 2 > 0 is the scale
parameter. Let Y denote the vector of the order statistics in the sample. We
will now obtain estimators of 0 1 and 0 2 which are the best among the
unbiased linear functions of the components of Y. The procedure is based on
the least-squares theory originally developed by Aitken (1935). Lloyd (1952)
first applied the general results in the order statistics setting.

Let X = (Y — 0 1 )/0 2 be the standardized population random variable
with cdf Fo(x) = F(x; 0, 1). Clearly, F0 is free of the parameters and, hence,
the means and the covariances of the order statistics from the X population,
11, :n and 0i , j : n , are free of them as well. Let X denote the vector of X-order
statistics corresponding to Y. Then, it is clear that

and

E(Y:n) = 01 4- e211i:n (7.5.1)

COV(Y:n,Y:n) =  	 (7.5.2)

for 1 < i, j < n.
Let 	 be the mean vector of X, and 0' = (0 1 , 0 2 ) be the vector of the

unknown parameters. Further, let 1 be an n x 1 vector whose components
are all l's. Then the n equations in (7.5.1) can be expressed in the matrix
form as

E(Y) = A9,	 (7.5.3)

where the n x 2 matrix A = (1,10 is completely specified. Also, (7.5.2) can
be put in the form

cov(Y) = o2E.	 (7.5.4)
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where cov(Y) represents the covariance matrix of Y, and / = (Q,j:n), the
covariance matrix of X, is known.

Suppose the goal is to choose 0 1 and 02 so that we minimize the quadratic
form

Q(0) = (Y — Au)'/ - '(Y — AO)

=(Y-0 11-0 2 µ)'E- '(Y-0 11-0 2 µ)

= Y'/ - 'Y — 20 1 1'/ - 'Y — 202 1.E- 'Y + 20 1 02 µE -1 1

+ 0i1'1 - '1 + 021.'E - 'µ.	 (7.5.5)

If Q(0) is minimized when 0 = 9 = (6 1 , 6 2 Y, we say that 6 1 and 6 2 are the
best linear unbiased estimators (BLUEs) of 0 1 and 0 2 , respectively.

On differentiating (7.5.5) with respect to 0 1 and 02 and equating to 0, we
obtain the normal equations as

(1'/ -1 1)0 1 + (µ'/ - '1)02 = 11/ -1 Y,

(µ/ - 11)0l + (µ,/ -Iµ)02 =

On solving these equations for 0 1 and 02, we obtain the solution

= —µ'rY and 6 2 = 1'rY,	 (7.5.6)

where F = ß, - '(lµ' — µ1')i, - '/A and t1 = (1'/- '1xµ'/ - 'µ) . — (1'/- '02 .
Note that r is a skew symmetric matrix. Further, (7.5.6) can be expressed as
the matrix equation 0 = (A'/ - 'A)- 'A'/ - 'Y where 6 = (6 1 , 6 2 Y. Now, we will
show that Q(0), given by (7.5.5), is actually minimized when 0 = 6. For this,
let us write

Q(0) = (Y—A6+A(6-0VE - '(Y — A6+ A(6-0))

= Q( 6 ) + 2(Y — A6)'/ - 'A(6 — 0) + (6 — 6 ) A'/ - 'A(6 — 0).
(7.5.7)

Since Y'/ - 'A — 6'A/ - 'A = 0, the middle term in (7.5.7) vanishes. The last
term there is always nonnegative, since / is positive definite. Hence, we can
conclude that Q(0) attains its minimum when 0 = 6, which means 6 is in fact
the BLUE of 0.

Using (7.5.4) and (7.5.6), it is easily seen that

var(6 1 ) = 02w'r/r'µ

var(62 ) = u21'rEr'1 = u21'/-'1/A,

(7.5.8)

(73.9)
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and

cov(81,82) = — 02µ' rEr'1 = —62µ'E- '1/d , 	 (7.5.10)

on simplification. These results can also be obtained by noting that cov(9) =
02(A'E- 'A) - '.

When the pdf of the standardized random variable X is symmetric around
the origin, further simplification is possible. In that case, (X 1 ,,,, ... ,

, Xn:n) 4 ( —Xn:n,_., — Xn — i + I : n,..., — Xl :n), which can be repre-
sented as

X = —ix (7.5.11)

where

	

0	 ...	 0	 1

	

J = 0	 ...	 1	 0

	

1	 0	 ...	 0

is a symmetric permutation matrix. Note that since JJ' = I, J = J -1 = J'.
From (7.5.11) it then follows that p. = —Jµ and E = JEJ. Hence,

µE -1 1 = µ(JEJ)1 = µJE -1J1 =

which implies that it must be zero. Thus, from (7.5.6) we obtain

Further,

e l = (1, E -

'Y) /(rE - '1), BZ = (µ E- 1Y) /µE—'µ. (7.5.12)

var(9 1 ) = 02/1'E - '1,	 var(6 2 ) = 02/µE -I µ,	 (7.5.13)

and cov(6 1 , 9 2 ) = 0. So in the case of a symmetric population, the BLUEs of
0 1 and 02 are always uncorrelated.

REMARK 1. Even though the formulas for 9 1 and e2 given in (7.5.12) are
much simpler than those in the general case, they still depend on E'.
However, in the symmetric case the problem of finding the inverse of E can
be reduced to inverting an associated matrix having only half the dimension
of E. The technique exploits the fact that vi  j:,, = u) i :n = on- +1,n-i+1:n
and the special form of 0 1 and 0 2 . See Balakrishnan, Chan, and Balasubra-
manian (1992) for further details.

REMARK 2. A question of interest is whether Yn , which is a linear
function of order statistics, can be the BLUE of the location parameter 0 1 .
For a symmetric parent this is possible only when 1'E - ' = 1' or E1 = 1. In
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other words, when E7_ 1 0.0 ,,,      = 1 for all i. From Theorem 4.9.1 we have
learned that this holds when F0 is standard normal. What happens with
skewed distributions? Bondesson (1976) has shown that F. is the BLUE of 0 1

for all n if and only if F0 is either standard normal or a gamma translated to
have mean 0. In all other cases Y„ is less efficient than 01.

REMARK 3. In the symmetric case, we have noted that 8 1 and 82 are
uncorrelated. Is this possible when F0 is skewed? cov(6 1 , 62 ) is zero if and
only if p -' 1 = 0. In that case, 6 1 and 62 are given by (7.5.12), as in the
symmetric case. Now for a gamma distribution translated to have mean 0,
p.'1 = 0, and since F„ is the BLUE of 0 1,=' 1 = 1. Thus we would have
VI -11 = p 1 = 0, indicating the fact that 6 1 , 6 2 are uncorrelated when F0 is
a gamma distribution translated to have zero mean.

REMARK 4. In general least-squares theory the parameter 0 is unre-
stricted, whereas here 02 is constrained to be positive. One natural question
then is, is it true that 6 2 > 0 with probability 1? To our knowledge this
question appears to be still open. However, all the available empirical
evidence supports the conjecture that 6 2 > 0.

REMARK 5. The discussion so far has concentrated on data consisting of
the full set of order statistics. If the observed data consists of a fixed subset
of order statistics to be labeled Y, the general formulas given in (7.5.6) and
(7.5.8)-(7.5.10) continue to hold. This means we can use them to obtain the
BLUEs and their moments when we have a Type II censored sample. The
formulas for the symmetric case hold whenever (7.5.11) is satisfied. This
occurs, for example, when we have a Type II censored sample from a
symmetric population where the censoring is also symmetric. Finally, note
that formulas developed here do not yield the BLUES when the sample is
Type I censored. (Why?)

Examples of BLUEs

The formulas for 8 1 , 62 , and their variances depend on E - ', the inverse of
the covariance matrix of observed order statistics. In general, finding the
inverse of a large matrix with nonzero entries is a messy affair. But E is a
patterned matrix for several distributions. Asymptotically (as n -> co) the
covariance matrix of a finite number of selected order statistics is a similar
patterned matrix. We begin with a lemma which is helpful in determining
E - ' in such cases.

Lemma 7.5.1. Let C = (c11) be a k x k nonsingular symmetric matrix
with c11 = a i b» i 5 j. Then C' is a symmetric matrix, and for i 5 1, its
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(1, j)th element is given by   

1
— (ai+lbi — aibi+l) ,

ai+ lbi- 1 — at- tbi+1 

j =i+1 and

i =1to k-1,

i =j = 2to k-1,

i =j=1,

i =j=k,

j>i+1.

,
_	 (aibi - 1 — ai - lbi)(ai+lbi — 

aibi +l)

a 2 {a 1(a 2 b l — a l b z)} , 
/	 1

bk-ll
jj
 bk(akbk- 1 — ak-lbk ) }

0,     

The lemma follows by the direct manipulation of the fact that CC - ' = I.

Graybill (1983, pp. 198) calls C -1 a diagonal matrix of Type 2, and has
another version of the lemma.

EXAMPLE 7.5.1 (two-parameter uniform distribution). Let f(y; 0 1 , 0 2 ) =
02 1 , 0 1 — (0 2/2) < y < 0 1 + (0 2/2) so that fo(x) = 1, — z < x < Z. Sup-
pose we are interested in the BLUEs of 0 1 and 0 2 based on the complete
sample. Examples 2.2.1 and 2.3.1 discuss the moments of order statistics from
the standard uniform distribution. From them it follows that

1

2 + n+1

and

= 	 z(n + 1) 2(n + 2)

i(n—j+1)	
i < j.

Thus, Lemma 7.5.1 is applicable to E. Using it, we obtain for i < j,

1   
j =i +1, i =lton -1,

j =i =lton,

where am is the (i, j)th element of E - '. Since fQ is symmetric around 0,
9 1 , 02 are uncorrelated and are given by (7.5.12). On simplification, we get

1	 n+1
e l = 2(Yl:n + 1'n:n),	 0 2 = n — 1 

(Yn.n 	 Yl:n), 	(7.5.14)
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and from (7.5.13) we obtain

82	 282
var(91) =

2(n + 1)(n + 2) ' 	
var(92 ) = ( n + 2)(n - 1 )

Thus, the BLUE of the location parameter is the sample midrange and that
of the scale parameter is a multiple of the sample range. It is known that
Y1: ,, and Y„ ; „ are jointly sufficient for (0 1 , 02 ) and that (Y1:n, Yn:ts)  is
complete. Hence, the BLUEs given by (7.5.14) are in fact MVUEs; see
Sarhan and Greenberg (1959) for more details.

In the presence of censoring, E -1 is a bit more complicated. So are the
estimators and their moments. For details see Exercise 26.

EXAMPLE 7.5.2 (two-parameter exponential distribution). Let us now
take fly; 0 1 , 02 ) = 82 1 exp(-(y - 0 1 )/02 ), y 0 1 . From (4.6.7) and (4.6.8)
we recall

i,j:n -	 i :n = E (n - r + 1) -2 ,	 i < j.
r=1

Hence, in Lemma 7.5.1 we can take a ; _ ^ ,.,, and b1 = 1. Once again, using
the complete sample for simplicity in our calculations, we obtain

(n-i) 2 ,	 j = i +1, i =lto n -1,

fr"= (n - i) 2 +(n - i +1) 2, i= j =lton,

0,	 j > i + 1.

Now recall (4.6.6) to note that µ;:„ _ ß;_ 1(n - r + 1)'. On substituting
these values in (7.5.6), we obtain

_ (nY1 : - Y„) 
01 	(n - 1)

n(Y„ - Y1:n) 
92 —	 •(n -1)

Further, from (7.5.8)-(7.5.10), it follows that  

e	
e2

2	 2

var(B 1 ) - n(n? 1) 
' var(82 ) = n 1 , and cov(61, 62) -

9 22 

n(n-1)•

 



ll
02	

1

s — r 
E Y 	 (n — r + 1 )Yr :n + (n — s)Ys:n1. (7.5.15)
i =r

61 = Yr:n	 =r:n62 and

s
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In the censored case the details are messy even though the procedure is
fairly routine. Suppose the data consists of 1 r : n+ , YS  n where 1 < r < s <
n. On carrying through the simplifications, one obtains

Further,

2
N' r:n

var(B i ) = OZ	 + Qr2 n ,s r
var(02) = 02/(s — r),

and cov(B 1 , 0 2 ) = — OZµ r:n/(s — r).
Some details about these calculations are available in Balakrishnan and

Cohen (1991, pp. 88-90). Sarhan and Greenberg (1957) have prepared tables
which give the coefficients for finding the BLUEs, and the variances and
covariance of the estimators, for all choices of censoring up to sample size 10.

One can compare the relative efficiency of these estimators in the cen-
sored-sample case with that corresponding to the full-sample case. Note that
the relative efficiencies, the ratios of the variances, are free of the unknown
parameters.

EXAMPLE 7.5.3 (the normal distribution). Since the normal distribution is
a symmetric distribution, formulas for the BLUEs of 0 1 (mean) and 02
(standard deviation) are given by (7.5.12). In the uncensored case we have
seen that 9 i is in fact the sample mean. Otherwise, the coefficients of
have to be evaluated for each choice of r, s, and n. In a series of papers in
the 1950s Sarhan and Greenberg tabulated these coefficients as well as the
variances and covariances of the estimators for sample sizes up to 20. They
are reported in the convenient reference, Sarhan and Greenberg (1962b,
pp. 218-268). Recently, Balakrishnan (1990) has extended these tables to
cover sample sizes up to 40.

For the purpose of illustration, we take the sample size n = 5, and present
Table 7.5.1 and Table 7.5.2 extracted, respectively, from Table 100.1 and
Table 10C.2 in Sarhan and Greenberg (1962b). The original source of our
tables, Sarhan and Greenberg (1956), reports the values of the coefficients
and the second moments to eight decimal places. Table 7.5.1 gives the
coefficients of order statistics for finding the BLUEs of and o based on the
censored sample Yr :  ... , Ys 5, for r = 1, s = 2 to 5, and r = 2, s = 3, 4.
Since the standard normal pdf is symmetric around 0, the coefficient of Y : n
for the BLUE of the parameters based on Y1 = ( Y -1 = -r : to ... , Y : n ) is related to
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Table 7.5.1. The Coefficients of YtS for the BLUES of the
Normal Population Parameters

Coefficient of

r s Est. Y1:5 Y2:5 Y3:5 Y4:5 Y5:5 

1 2 p. -0.7411 1.7411
6 - 1.4971 1.4971

1 3 µ. -0.0638 0.1498 0.9139
6 - 0.7696 - 0.2121 0.9817

1 4 it 0.1252 0.1830 0.2147 0.4771
6 -0.5117 -0.1668 0.0274 0.6511

1 5 µ 0.2 0.2 0.2 0.2 0.2
6 -0.3724 -0.1352 0 0.1352 0.3724

2 3 µ 0 1
6 -2.0201 2.0201

2 4 µ 0.3893 0.2214 0.3893
6 - 1.0101 0 1.0101

Table adapted from Sarhan and Greenberg (1956, Ann. Math. Statist. 27, 427-451). Produced
with permission of the Institute of Mathematical Statistics.

the coefficient of Yn + 1: n when the data is made up of Y2 =

(Yn-s+1:n2 , Yn-r+1:n)• In the case of µ, the coefficient of Y when the
given data is Y 1 and the coefficient of Yn _ 1 + 1: n based on the data Y2 are the
same, whereas in the case of 6, they differ only in their sign. Thus, Table
7.5.1 can be used to find the coefficients of Y : n for determining µ or 6 for
all censored samples of the form Y, :5, ... , Y .5, where 1 5 r < s 5 5. Table
7.5.2 exhibits the variances and covariances of the BLUES. Here again the
symmetry of the normal pdf can be used to read these moments for all
censored samples of the form Y, :5) ... , K:5.

Along with their rather extensive tables, Sarhan and Greenberg (1962b)
note several interesting facts. For example, they point out that when the
sample size is odd and only the sample median and its neighbor on either
side are available, the BLUE is the sample median (Do we see this in our

Table 7.5.2. Variances and Covariances of
Y,.5,...,YY:s from N(p.,a 2 ) when a = 1

and ö for the Censored Sample

r s 2 3 4 5

V(µ) 0.6112 0.2839 0.2177 0.2
1 V(6) 0.6957 0.3181 0.1948 0.1333

cov( ja, 6) 0.4749 0.1234 0.0330 0

V(µ.) 0.2868 0.2258
2 V(6) 0.7406 0.3297

cov(µ, 6) 0.1584 0

Table adapted from Sarhan and Greenberg (1956, Ann. Math. Statist. 27, 427-451). Produced
with permission of the Institute of Mathematical Statistics.
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Table 7.5.1?) They also observe that the relative efficiency of µ and & in the
censored case in relation to the full sample case is reasonably high as long as
the middle observations are available.

The BLUEs of 0 1 and 0 2 can be used to obtain the BLUE of any linear
function of these parameters. It is known from general least-squares theory
[see, for example, Rao (1973, pp. 223)] that the BLUE of 1'9 (= 1101 + 12 02 )
is 1'8 where 9 1 and 6 2 are given in (7.5.6). Further, its variance is I' cov(Ä)1 =
8?l'(A'E -1A) - '1. Important examples of linear parametric functions are the
pth population quantile F- '(p) and the quantile difference F-1(p2) -
F -1(p 1 ). The BLUE of F - '(p) = 8 1 + 82 F0- '(p) is (-g + F0- 1(p)1')TY,
where Fti- '(p), the pth quantile of the standardized distribution is known.

Tables of the coefficients of the BLUEs of the location and scale parame-
ters are available for several common distributions. For details about the
references, see Balakrishnan and Cohen (1991, pp. 120).

Asymptotic Approaches to Best Linear Unbiased Estimation

We have already seen in Section 5.5 through (5.5.4)-(5.5.6) that for large n, 

Pig; 
i < j,	 (7.5.16)t,1:n

(n +2)f(F -1 (p;))fIF`'(pj))
,

with p, = 1 - q, = i/(n + 1). From (7.5.16) it is clear that the covariance
matrix E of the selected order statistics can be approximated by a patterned
matrix having the form of C of Lemma 7.5.1. Blom (1958, 1962) exploited this
feature to obtain "unbiased, nearly best linear estimators" for linear func-
tions of the location and scale parameters.

The asymptotic theory of linear functions of order statistics (to be formally
developed in Section 8.6) has also been used successfully to obtain asymptoti-
cally BLUEs given a complete or a censored sample. For example, it would
be nice if we could find a function J(u), 0 < u < 1, such that 9 1 is approxi-
mately ti Ei=1 J(i/(n + 1))Y.,,. This would eliminate the need for
extensive tables of coefficients for various (especially large) sample sizes.
Pioneering work in this direction was carried out by Bennett (1952) and was
pursued by Chernoff, Gastwirth, and Johns (1967). For a N(0 1 ,0 2 ) popula-
tion, their results indicate, as anticipated, that Yn [for which J(u) = 1] is an
efficient estimator of 0,. Further, the linear function with J(u) = 43 - '(u)
provides an asymptotically BLUE of 0 2 , and is very close to its finite sample
BLUE.

An area of substantial research is in the optimal selection of a predeter-
mined number of order statistics with the goal of minimizing the variance of
the BLUE of the parameter of interest. When both the location parameter 01
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and the scale parameter 02 are unknown, the goal is to minimize the
determinant of the covariance matrix of (6 1 , 6 2), which is known as the
generalized variance of 8. Suppose, for a given sample size n, cost or other
considerations force us to observe only k order statistics Y ,,, Y2: ,,, ... , Y,•k :,,,
where 1 < i 1 < • • • < ik s n. Then, we can choose them so that
var(6 1 )var(62) — cov 2(6 1 , 82) is the smallest possible where the value of the
generalized variance can be computed from (7.5.8)—(7.5.10) for all possible (k )
subsets of the vector of all order statistics. One can use the asymptotic joint
normality of central order statistics (to be developed in Section 8.5) to
produce optimal choices of 0 < p 1 < • • • < pk < 1, where i, = [np,.] + 1,
1 < r s k. This approach was initiated by Ogawa (1951). We have already
noted in (7.5.16) the structure of the covariance matrix E of the selected
order statistics. This helps considerably in simplifying the optimization prob-
lem. The details are quite involved and beyond the scope of this book. They
can be found in Section 7.3 of Bälakrishnan and Cohen (1991). or in David
(1981, Section 7.6).

Simple Least-Squares Estimators

Having discussed the BLUEs in detail, it is clear that the computation
requires inverting E, the covariance matrix of the observed order statistics.
To avoid this hassle, one can use the simple least-squares estimators, which
minimize (Y — A9y(Y — A0) instead of the BLUEs, which minimize (7.5.5).
This was suggested by Gupta (1952). Thus, one obtains his estimators by
replacing E by I in (7.5.6). On doing this, the simple least-squares estimators
can be expressed as

6i = {(µµ)1' — (mµ)µ}Y/0* and 92 = {mµ' — (mµ)1'}Y/0*
(7.5.17)

with A* = mE ;(µ — 02 , where µ is the average of the µ ; : ,,'s correspond-
ing to the m selected order statistics.

While the simple least-squares estimators depend only on the means of
the order statistics from the standardized distributions, their efficiency (in
relation to BLUEs) is high, especially for the normal parent.

7.6. PREDICTION OF ORDER STATISTICS

Prediction problems come up naturally in several real-life situations. They
can be broadly classified under two categories: (i) the random variable to be
predicted comes from the same experiment so that it may be correlated with
the observed data, (ii) it comes from an independent future experiment. In
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connection with order statistics, both of these situations are feasible. Let us
look at a couple of examples.

Suppose a machine consists of n components and fails whenever k of
these components fail. Observations consist of the first r failure times, and
the goal is to predict the failure time of the machine. Assuming the compo-
nents' life lengths are i.i.d., we have a prediction problem involving a Type II
censored sample, and it falls into category (1). One can think of a point
predictor or an interval predictor for the k th order statistic. Let us call this a
one-sample problem.

A manufacturer of certain equipment is interested in setting up a warranty
for the equipment in a lot being sent out to the market. Using the informa-
tion based on a small sample, possibly censored, the goal is to predict and set
a lower prediction limit for the weakest item in the lot. This falls into
category (ii), and we call this a two-sample problem.

Let us now consider the one-sample problem more closely. The best
unbiased predictor of Yk : n is E(Yk : n I Y1 : n , . .. , Yr : n ) = E(Yk : n I Yr : n ) by the
Markov property of order statistics, assuming, of course, that F is absolutely
continuous. But when the parameters of F(y; A) are unknown, they have to
be estimated. In the location and scale family case, the best linear unbiased
predictor (BLUP) can be obtained by using the results on the general linear
model. It turns out the BLUP of Yk :n is

Yk:n =0 1 + µk:ne2 + 'Ail 1(Y-911—B2µ) (7.6.1)

where 9 1 , 9 2 are the BLUEs of 0 1 and 02 given by (7.5.6) and to' =
(O1, k : n, • • • , 0r, k : n)• When u i : n = a, bb , i < j, using Lemma 7.5.1 it can be
shown (please try!) that (0 1/ -1  = (0, ... , 0, br/bk ) and, hence,

Yk:n = e l + Nk:n e2 + 
bk 

( Yr:n — 6 1	 µr:n62)•	 (7.6.2)

EXAMPLE 7.6.1 (two-parameter exponential distribution). When Y1: n, • ,
Yr : n are observed, from (7.5.15) we have 9 1 = YI : n — 02/n and 0 2 =

YI:n) + (n — r XYr:n — YI:n)}/(r — 1). Further, since br/bk =
1, from (7.6.2) we conclude

(

r+1 n— i +1

k	 1

Yk:n — Ken + (N'k:n Nr:n)e2 — Yr:n + 
i=

c. 	 )92 (7.6.3)

is the BLUP of Yk : n.
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As in the case of estimation, minimizing the mean-squared error of
prediction and insisting on unbiasedness are not the only optimality criteria
statisticians have come up with. Predictors based on Pitman's nearness
criterion and on maximizing the likelihood have been discussed in the
literature and have been applied to the prediction of order statistics. [See
Nagaraja (1986c), and Kaminsky and Rhodin (1985) for some details.] All of
these refer to the problem of point prediction. One can establish a prediction
interval for Yk : n as well. Let us look again at the two-parameter exponential
example.

EXAMPLE 7.6.1 (continued). Note that, with Z;'s being i.i.d. Exp(1),
(r — 1)6 2 = E,=2(n — i + 1XY. n — Y-l:n) d= 02 E;E 2 Z, (recall Theorem
4.6.1) and, hence, (r — 1)62/0 2 is F(r — 1,1). Further,

k	 1^'` 	  
Yk:n  Yr:n — e2 L

 n — 1 + 1 	 Yk-r:n -r
i =r+1 	•

Since Z;'s are i.i.d. Exp(1) random variables, (Yk : n — Yr : n) and 6 2 are
independent. Hence, one can use the pivotal quantity T = (k : n — Yr : n)/
(r — 1)6 2 , where the numerator is distributed like an order statistic from a
standard exponential distribution and the denominator is a gamma random
variable and is independent of the numerator. On conditioning with respect
to (r — 1)92 , and using the rule of total probability, we obtain the survival
function of T to be [see Likes (1974)]

1
P(T>t) 

B(n — k+1,k—r)

x E 	1	 1

n —i +1i =r +1 { 1 +(n —i + 1) t}r—I •

(7.6.4)

If P(T > t0) = 1 — a, then a 100a% prediction interval for Yk : n would be

(Yr:n'Yr:n + t0(r — 1)92 ).

One can extend the discussion of prediction in a single sample to the
two-sample problem. Now the goal is to predict Yk  m , the k th order statistic
of a future random sample of size m from F(y; 0) based on the data
consisting of Y1: n, ... Y,. n . The BLUP of Yk : m would be t : „,m = 6, +
p., : „,62 , since COV(Yk :  m , Y : n) = 0. One can also consider the problem of
finding a prediction interval for Yk  m . In the case of the two-parameter
exponential distribution the pivotal quantity T' = (YI : m - y, : „)/(r - 1)62

behaves in a manner very similar to the random variable T in Example 7.6.1
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and may be used to construct a prediction interval. See Lawless (1977) for
details about the prediction intervals for Yk : m and also for Y,;,, the mean of a
future independent sample.

7.7. DISTRIBUTION-FREE CONFIDENCE AND
TOLERANCE INTERVALS

We have seen in (2.4.1) that if Y 1 , ... , Y is a random sample from an
absolutely continuous cdf F(y; 0), F(.; 0) = U; : „, and in (2.5.21) we no-
ticed that the quasirange U^ : n — U; : n  U _; : n . The first fact can be used to
produce confidence intervals for a population quantile F -1 (p) whose end-
points are order statistics and have coverage probabilities free of F, as long
as it is continuous. On combining the two facts, we can obtain tolerance
intervals (to be defined later) which do not depend on F. Such procedures
are known as distribution-free procedures. They can be used when either E
or the form of F itself is unknown.

Confidence Intervals for Population Quantiles

When F is absolutely continuous, F(F - '(p)) = p and, hence, we have

P(Yi:n < F i (P)) = P(F(Y:n) < p)

=	 P)
n
E (nr )pr(1
r=1

from (2.2.13). Now for i < j, consider

(7.7.1)

P(Y:n < F -1 (P)) = P(Y:n < F- '(P), Y:„ < F -1 ( p))

+ P(Y:n < F- '(P), Y : n ? F -1 (P))

= P(Y < F-' (p)) + P(Y :n < F-1(P) < Y :n ).

Since Y is absolutely continuous, this equation can be written as

P(Y:n < F-1(P) < 1:n) = P(Y:n <F- '(P)) — P(Y : „ < F-'(P))
J-1
^ ' (nr )pr(1
r =1

(7.7.2)

where the last equality follows from (7.7.1). Thus, we have a confidence
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interval [Y : ,,, 1 j for F-1(p) whose confidence coefficient a(i, j), given by
(7.7.2), is free of F and can be read from the table of binomial probabilities.
If p and the desired confidence level a o are specified, we choose i and j so
that a(i, j) exceeds a0 . Because of the fact that a(i, j) is a step function,
usually the interval we obtain tends to be conservative. Further, the choice of
i and j is not unique, and the choice which makes (j — i) small appears
reasonable. (Why don't we consider minimizing the expected length of the
confidence interval?) For a given n and p, the binomialpmf ( ; )p •(1 — p )^ - r

increases as r increases up to around [np], the greatest integer not exceeding
np, and then decreases. So if we want to make (j — i) small, we have to start
with i and j close to [np] and gradually increase (j — i) until a(i, j) exceeds
ao. In the case of p = 0.5, we obtain the smallest (j — 1) by choosing
j = n — i + 1.

Even when the sample size is moderately large, one can use the normal
approximation (with continuity correction) to the binomial probabilities to
approximate the confidence level as

a(i,j } cp
( _0.5_ nP ) ^ i - 0.5 — np

- 	  

►^np( 1 — p)	 Ynp(1 — p) ‚
(7.7.3)

and for a given ao one can choose i = [np + 0.5 — 0'01 +
a Q)/2)/np(1 — p) ] and j = [np + 0.5 + to - '((1 + ao)/2)1Inp(1 — p) ] to
obtain a confidence interval with an approximate confidence level of ao .

One can also construct parametric confidence intervals for F- '(p) which
assume the form of F to be known. Such intervals constructed from sufficient
statistics probably do better when our assumptions regarding F are valid, but
obviously are not as robust as the distribution-free procedure we have
discussed. We are now ready for an example.

EXAMPLE 7.7.1. The following 10 observations, simulated from the stan-
dard normal distribution using the statistical package MINITAB, are pre-
sented in increasing order: —1.61, —1.36, — 0.76, — 0.57, 0.05, 0.27, 0.32,
0.60, 0.82, and 1.26. For this data the sample mean is — 0.098, and the sample
standard deviation is 0.946. The 89.06% confidence interval based on the t
distribution for the population mean, which is also the population median, is
( - 0.629,0.433). Using tables for the Bin(n, p) pmf with n = 10 and p = 0.5,
we see that (Y3: 10' Y8:10) provides a confidence interval for the population
median with the same level of confidence; with this data the interval is
(— 0.76, 0.60). The approximate confidence level of this interval as given by
(7.7.3) turns out to be 88.58%. Don't expect the normal approximation to be
this good if p is far away from 0.5. If our data had actually come from a
Cauchy population, our parametric interval would be questionable, while the
one based on order statistics would still be valid!
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Even though in the discrete case (7.7.2) does not hold, we will be very
close; in fact the confidence level of [Y, : ,,, Y : n ] is no less than a(i, j),
whereas the confidence level of (Y, : ,,, Y : n ) is no more than a(i, j). (Can you
show?)

The technique developed here for a single quantile can be extended to
obtain conservative confidence intervals for quantile differences. This could
be handy if one is interested, for example, in the interquartile range. Some
details may be found in David (1981, pp. 15-16) and references therein. The
earliest work in this area seems to be that of Thompson (1936).

Tolerance Limits and Intervals

Consider a population with absolutely continuous cdf F. For an interval
(a, b), the proportion of the population falling in that interval is F(b) — F(a).
Now suppose L 1 and L2 are random variables such that L 1 < L2 with
probability 1; then the random interval (L 1 , L 2 ) contains the random propor-
tion F(L 2 ) — F(L 1 ) of the population. Suppose these L 1 and L2 are chosen
such that

P(F(L2) — F(L 1 ) > ß) = a; (7.7.4)

the interval (L I , L 2 ) will contain at least 1000% of the population values
with probability a. This interval is called a 1000% tolerance interval at
probability level a, and its endpoints are called the tolerance limits. The
concept of tolerance interval, originally due to Shewhart (1931), has found
applications in quality control. Quite often one takes a and ß to be either
0.95 or 0.99. Order statistics come into the picture here in the form of L, and
L2. Let us now see how.

Suppose we select a random sample Y 1 , ... , Yn from this population. On
taking L 1 = Y   and L 2 =    where i < j, we have L I < L 2 with probabil-
ity 1 and

F(L2) — F(L 1 ) = F(Y:n) — F(Y:n)

� U• i:n 	 Ui:n

d U. _
• ^ t:n+

with the last equality following from (2.5.21). Hence, in (7.7.4) we have

P(F(L 2 ) — F(L 1 ) > ß) = P(U_;:n > ß)

i —i —I	
/^ (	 /^= ^ ( j. ) f^ r \ 1 — 1.' )

n—r

r =o

= a*_„ say. (7.7.5)
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This probability depends only on (j - i) and is free of F. In other words, the
interval (Y• : " , Y , n) forms a distribution-free 1O0ß% tolerance interval for the
population at probability level given by (7.7.5). Now if a is specified, we
choose some i, j such that a7 1 exceeds a, and this results in a conservative
interval. For specified a and ß one may have to take sufficiently large
n so that there exist i, j for which this is possible. From (7.7.5) it is clear
that 4 1 increases as (j - i) increases and, hence, its maximum value is
1 - 0" -I(1 - ß) - ß" (How?). This monotonically increases to 1 as n
increases and, thus, ultimately exceeds a for any given a < 1. One can solve
for the threshold value of n.

Sometimes one-sided tolerance regions will be of interest. For example,
based on the life lengths of a sample of gadgets from a lot, we may want to
set up an interval of the form (L 1 , 00) with the following property: At least
90% of the untested gadgets in the lot have life lengths exceeding L 1 with
probability of, say, 95%. We can easily modify the above discussion to obtain
the lower tolerance limit L I . Note that P(1 - F(X, : ") > ß) = a"*_1+I, where
a* is given by (7.7.5). Thus, the interval (X; . ", oo) contains at least 100ß% of
the population values with probability an _ 1+ I

7.8. GOODNESS-OF-FIT TESTS

In many nonregular cases (in the sense of Section 7.3) the order statistics are
minimal sufficient and play a crucial role in the development of optimal tests.
Even in regular cases, tests based on order statistics abound in the literature.
For example, they are used for testing goodness-of-fit of distributions like the
exponential and uniform, and for testing for outliers. The goodness-of-fit
tests are also available when the data is a censored sample. Instead of
squeezing in all these rather specialized topics in our elementary discussion,
we work with some special cases only with the goal of providing a feel for this
vast area of continuing research.

Graphical Procedures

We will begin with a graphical, rather informal, method of testing the
goodness-of-fit of a hypothesized distribution to given data. This procedure,
known as Q-Q plot, was introduced by Wilk and Gnanadesikan (1968). It
essentially plots the quantile function of one cdf against that of another cdf.
When the latter cdf is the empirical cdf defined below, order statistics come
into the picture. Such Q-Q plots are widely used in checking whether the
random errors in an assumed linear regression model behave like a random
sample from a normal distribution. Statisticians routinely produce these plots
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as part of their data-analysis diagnostics. Let us formally describe the
procedure in the context of order statistics.

As in Section 7.5, let Y1 , Y2 , . . . '17n  
be a random sample from the

absolutely continuous cdf F(y; 0 1 , 0 2 ), where 01 is the location parameter
and 02 > 0 is the scale parameter. The empirical cdf, to be denoted by F,,(y)
for all real y, represents the proportion of sample values that do not exceed
y. It has jumps of magnitude 1/n at Y : ,, , 1 < i < n. Thus, the order statistics
represent the values taken by F,,-1 (p),  the sample quantile function. (See
Exercise 34 for some further details about Fn .) The Q-Q plot is the graphical
representation of the points (F- '(p,), Y : n ), where population quantiles are
recorded along the horizontal axis and the sample quantiles on the vertical
axis. There are several suggestions about choosing the p,'s. Usually they are
of the form p, = (i — c)/(n — 2c + 1), where 0 < c < 1. With c = 0, one
obtains pi = E(U : n ), and with c = 0.3175, pi will be close to the median of
the distribution of U : n . Note that F -1(p) = 0 1 + 0 2 Fo— 1 (p) where Fo , the
standardized cdf, is completely specified. Thus we can plot (F(T '(p . ), Y, : n )
and expect the plot to be close to a straight line if the sample is in fact from
F(y; 0 1 ,0 2 ). If not, the plot may show nonlinearity at the upper or lower
ends, which may be an indication of the presence of outliers. If the nonlinear-
ity shows up at other points as well, one could question the validity of the
assumption that the parent cdf is F(y; 0 1 , 0 2 ). In that case, can the Q-Q plot
suggest some plausible alternatives? In some cases yes, as can be seen from
the interesting discussion in D'Agostino (1986a) about the normal and
log-normal families. Further, if the plot appears close to a straight line, we
can estimate 01 and 02 using the intercept and the slope of the line of best
fit. The Q-Q plots can also be used to inspect the closeness of the fit, even
when the data is censored.

Plots based on order statistics are also used for checking whether the
parent pdf is symmetric. The simplest one is the plot of (Y  n , Yn _ 1+ 1: n ) for
i = 1, ... , [n/2], whose slope is always negative. If the symmetry assumption
holds, we expect a slope of —1. If the slope is less than —1, it is an indication
of positive skewness, and if it exceeds — 1, we suspect the distribution to be
negatively skewed. Wilk and Gnanadesikan (1968) note another scheme
suggested by J. W. Tukey in which one plots the sums Y :,, + Yn _;+ I : n
against the differences Y1:n  — Yn _; + I : n , i = 1, ... , [n/2]. For a symmetric
distribution, we expect the configuration to be horizontal.

Tests for the Exponential Distribution

Let us consider the problem of testing whether the available Type II
censored sample Y1: n , ... , Y,  n is from the two-parameter exponential pdf
f(y; 0 i , 0 2 ) = (1/0 2 )exp(—[(y — 0 I )/0 2 1), y >_ 0 1 . The likelihood function
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for this data is given by

n!	 1	 ( 	l
L(01, 02IY) _ (n — r)! OZ 

exp ( —(^ (Y; — 0 1 ) + (n — r)(Yr — 0 1 ))10 2
1,

0 1 � Y 1 < ••• <yr.

Thus, the MLEs are

and B2 =	 (n — i + 1)(Y :n — Y_1 :n ) j/r. (7.8.1)
2

Note that (9 1 , 02 ) is the complete sufficient statistic for (0 1 , 02 ) and, hence,
the MVUEs of the parameters can be determined easily. In fact, the BLUES
obtained in Example 7.6.1 are the MVUEs of the respective parameters.
Under the assumption of exponentiality, n(0 1 — 0 1 )102 is standard exponen-
tial, and r02/02 is flr — 1, 1). More interestingly, they are independent
(Exercise 16). For what other distribution have you encountered such a
phenomenon where the MLEs of the location and scale parameters are
independent?

Suppose we want to test the null hypothesis H 0: 0 1 = 0? (a known
quantity) against the alternative H I : 0 1 # 0?, when 0 2 is unknown. Then the
likelihood ratio test rejects H0 if {L(0?, 02)/L(9 1 , O2 )} is small. Here, B (2) is
the MLE of 0 2 under H0 , and 0 1 , 02 are the MLEs with no restrictions on
the parameters, and are given by (7.8.1). This leads to a test based on the
statistic T1 = n(0 1 — 0?)/0 2 which has an F(2. 2(r_ 1)) distribution under Ha .
One rejects H0 if T1 < 0 or if T1 is large. On the other hand, if H0 : 02 = 0?

and HI: 02 * 02, the likelihood ratio test procedure is based on the statistic
T2 = 2r9 2/92, which has a x 2(2(r — 1)) distribution when H0 is true.

In a goodness-of-fit testing situation, H0 says the parent cdf is exponential
with values for the parameters unspecified. We could use the usual Karl
Pearson chi-square test if we have a complete sample and the sample size is
large. We could also use some of the characterization results discussed in
Chapter 6 to test for exponentiality. In fact, when F is one-parameter
exponential with the parameter being the scale, a test has been suggested in
Section 6.1. One can devise any number of test procedures which possess
good power against a certain type of alternative, and that is exactly what has
been done in the literature. For example, Epstein (1960a, 1960b) has sug-
gested one dozen tests for exponentiality. Choosing a test should be based on
the type of alternatives one has in mind; for example, the alternative may be
that F has decreasing or increasing failure rate. We do not plan to catalog
and discuss the large number of tests for exponentiality suggested in the
literature. Interested readers may consult the extensive survey by Stephens
(1986).

öl = Yl : n
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Just as in the case of the exponential distribution, many goodness-of-fit
tests have been proposed for normal and for uniform distributions. The
former is an important distribution in its own right, and the latter is
important because as we all know by now, the probability integral transfor-
mation reduces a hypothesis on an arbitrary (absolutely) continuous distribu-
tion to the one based on the uniform distribution. Prominent test procedures
suggested for this purpose often depend on order statistics or the empirical
cdf. Even under the null hypotheses, the distributions of the test statistics are
messy, and special tables, quite often based on simulation, are needed to
apply these tests. One test for normality suggested by Shapiro and Wilk
(1965) uses the ratio of the BLUE of the population standard deviation
discussed in Example 7.5.3 and the sample standard deviation as the test
statistic. We do not pursue the details here. Instead we refer to an elaborate
review of tests for normality by D'Agostino (1986b).

7.9. OTHER APPLICATIONS

Our basic assumption throughout this chapter (in fact in this book) is that the
sample is a random sample; in other words Y 1 , ... , Y„ are i.i.d. random
variables with cdf F(y ; 0), where the parameter 0 is possibly unknown. But
what if this basic assumption is violated in that one or possibly more of the
Y's are from a different population having cdf F* which may or may not be
completely specified? The values generated from F* are labeled outliers or
discordant observations in the literature. The possible existence of these
outliers raises several natural questions about the decision rules we propose
on the basis of our assumptions about the sample. One of them is how to test
for the existence of outliers and identify them, and another is how to devise
decision rules which are less influenced by these outliers. We will briefly
discuss these topics here. Another area of voluminous research is that of
ranking and selection of populations where the basic assumption is that the
Y's, while being independent, come from distinct populations. The goal may
be to rank the populations or select the best population based on our data.
The discussion of these topics is beyond the scope of this text. Interested
readers may consult either Gibbons, O1kin, and Sobel (1977) or Gupta and
Panchapakesan (1979) for an introduction. Another related area where order
statistics play a major role is that of multiple comparison procedures. They
are discussed in Hochberg and Tamhane (1987). There again, the basic
premise is that the Y's are nonidentically distributed.

Tests for Outliers

When one suspects the presence of outliers in the sample, there are interest-
ing statistical issues to deal with, some of which are: (i) How to test for the
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existence of outliers so that our modeling of the data can be validated? (ii) If
we accept the hypothesis that outliers are present, how can we identify them?
(iii) If one or more of the extreme order statistics are too far away from the
rest, should we throw them out because of the suspicion that they are
outliers? (iv) What are the implications of our tests for outliers on subse-
quent statistical procedures? In this maze of questions, there are no simple
or obvious answers. Let us now consider a simple problem involving the
normal population for the purpose of illustration.

Let H0 : YI , ... , Y, be a random sample from N(µ, (r 2 ) distribution and
HI : One of these Y's is from N(µ + 8, o 2), where 8 > 0, and the rest are
from N(µ, 0- 2). The actual values of µ, S, and r2 are unknown. Here, F is
the N(µ, a 2) cdf, while F* is the cdf of a N(µ + S, Q 2) population. This
alternative hypothesis is known as the slippage alternative in the sense that
one of the sample values is from a different population (with cdf F*), whose
location parameter has slipped (to the right). Another commonly used
alternative is the mixture alternative, where the alternative states that the Y's
come from the mixture cdf (1 — p)F + pF* for some p, 0 < p < 1, but we
will stick with the slippage alternative in what follows.

What are the performance measures which are suitable for comparing test
procedures in this situation? If our goal is just to know whether there is
evidence to reject Ho and we are not concerned with finding out which
observation is the outlier when we reject it, we would try to maximize the
power function P(Rejecting H0 11-11 ). But life is not that simple. We may
need the noncontaminated observations to produce an estimator of µ, in
which case we need to know which one to throw out as an outlier if H0 is
rejected. Since when H 1 is true, P(Y : ,, is the outlier) is maximized when
i = n, we can construct a test based on the statistic

T = (Y — P,,)/S, (7.9.1)

where S 2 = E,"c I(Y — P„)2/(n — 1) is the sample variance. The test proce-
dure rejects H0 if T is large. If H0 is rejected, we remove Y from the
sample or give less weight to it in subsequent statistical analyses. Barnett and
Lewis (1984, pp. 167-168) enumerate several optimal properties of this test
procedure. For example, it is the likelihood ratio test and maximizes the
probability of correctly identifying the outlier among tests which are location
and scale invariant. It was first proposed by Pearson and Chandrasekar
(1936), who essentially compute the percentage points of T for some values
of n. Note that T, sometimes referred to as the internally studentized
extreme deviate, belongs to the class of statistics discussed in Exercise 4.17.

Percentage points of T under H0 are given in Table 7.9.1 for some small
values of n. The table was extracted from the tutorial article by Grubbs
(1969), which contains a nice discussion on outliers.

EXAMPLE 7.9.1. Consider the following data, consisting of 15 observa-
tions generated independently and arranged in increasing order. Using
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Table 7.9.1. Percentiles of the Distribution of (Y.,. - Y„) / S
in Random Samples from a Normal Population

Sample Size
(n)

95th
Percentile

97.5th
Percentile

99th
Percentile

3 1.15 1.15 1.15
4 1.46 1.48 1.49
5 1.67 1.71 1.75
6 1.82 1.89 1.94
7 1.94 2.02 2.10
8 2.03 2.13 2.22
9 2.11 2.21 2.32
10 2.18 2.29 2.41
11 2.23 2.36 2.48
12 2.29 2.41 2.55
13 2.33 2.46 2.61
14 2.37 2.51 2.66
15 2.41 2.55 2.71
20 2.56 2.71 2.88

Table adapted from Grubbs (1969, Technometrics 11, 1-21). Produced with
permission from Technometrics. Copyright 1969 by the American Statisti-
cal Association and the American Society for Quality Control. All rights
reserved.

MINITAB, 14 of these were simulated from the standard normal population,
and the remaining one was generated from a N(3, 1) distribution: -1.671,
- 1.506, -1.199, - 0.759, - 0.529, - 0.434, - 0.145, 0.189, 0.335, 0.591,
0.592, 0.702, 0.770, 1.141, 3.656. For this sample, the mean is 0.116 and the
sample standard deviation is 1.308. Hence, the calculated value of the
statistic T is 2.71 which turns out to be the 99th percentile of the distribution
of T under the null hypothesis of no outliers. Without the sample maximum,
which in fact came from the outlier distribution, the sample mean would be
- 0.137 and the sample standard deviation would be 0.900. When the sample
is made up of these 14 observations, one obtains the value of T to be just
1.42.

Let us see how the Q-Q plot looks. We used MINITAB to produce the
population quantiles (I) -1(p;) in which pi = (i - 0.375)/(n + 0.75). The
package SYSTAT (1990) was used to produce the following plot of
(0-1(p), Y:15),i= 1 to 15 .

Tests for outliers are often susceptible to a so-called masking effect, and
the statistic T given by (7.9.1) is no exception. In this context, the masking
effect arises, for example, in the presence of two outliers. If in fact there are
two observations in the sample which are from the slipped population, the
value of T tends to be smaller and, hence, we may end up accepting H 0

quite often even when it is false. See Exercise 36 for an illustration. To
handle such a situation, we can test for the presence of multiple outliers, as
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Figure 7.1. Q-Q plot of the data in Example 7.9.1.

•
2
-2

•
	I 	 I	 I	 I

	

—1	 0	 1	 2
Population Quantiles

was done by Murphy (1951). The test statistic used by him compares the
average of the top k sample values with the sample mean in terms of sample
standard deviation units. Such statistics are also known as selection differen-
tials. (See Example 8.6.5 and Chapter 4, Exercise 17 for some details.)

The literature on outliers has been well synthesized in the comprehensive
work by Barnett and Lewis (1984). They treat various aspects of this problem
in general. For several common distributions, they list test procedures and
present tables containing percentiles of the various test statistics used.
Another useful reference on outliers is the monograph by Hawkins (1980).

Robust Estimators

In view of the discussion we had about outliers, concerns arise about
commonly used estimators of parametric functions of interest. Can we find
estimators which are affected minimally by the presence of outliers? How
does the estimator which we claim to be optimal when the parent cdf is F
behave when a part or the whole of the sample is from F*? Issues like these
lead us to the study of robust estimators whose properties are less susceptible
to model violations. The types of violations considered in the literature can
be broadly classified as being of the following types: (i) The outliers come
from F*, a cdf related to F through a change of location and/or scale. (ii)
The entire sample is from an altogether different population with cdf F*.
Note that the distribution-free confidence interval for the population quan-
tile constructed in Section 7.7 is robust against the second kind of violation.
As you can imagine, it is impossible to construct an estimator which is
optimal under all circumstances. To achieve robustness against the violation
(i), especially when F* is from a slipped population, one usually omits or
gives less weight to the sample extremes while constructing the estimator.
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Sometimes this also achieves robustness against the violation (ii), even
though the choice of F* there pretty much decides the fate of an estimator
when the departure from the assumed model takes place.

One popular robust estimator of the center of a symmetric distribution is
the symmetric trimmed mean

where we have trimmed the top r and the bottom r order statistics. Note
that the two extreme values of r yield the sample mean (r = 0) and the
sample median (r = [(n — 1)/2]) in (7.9.2). Clearly, the trimmed means are
L statistics. Among such statistics, the ones which give less weight to the
sample extremes are suggested as robust estimators. They are robust against
the presence of a moderate number of outliers and are highly efficient when
there are no outliers. However, their exact distributions are generally ex-
tremely complicated, and, hence, either extensive simulation or their asymp-
totic distributions (usually normal) are used to study the properties of such
estimators. As pointed out earlier, in Section 8.6 we formally introduce L
statistics and discuss the relevant asymptotic theory. Special attention will be
given to the trimmed mean. In Example 8.6.4, we will establish the asymp-
totic normality of Tr when r = [np], 0 < p < 1, under some mild conditions
on F.

EXAMPLE 7.9.2. Let F1 , F2 , F3 denote the cdfs of NO, 1), the Laplace
distribution with location parameter 0, and the Cauchy distribution with
location parameter 0, respectively. Note that all these are symmetric distribu-
tions having bell-shaped pdfs, but the tail thickness increases with i, i = 1 to
3. Consider the two estimators the sample mean Y„ and the sample median
Y„. Which one is a better estimator of 0? The answer depends on the
assumed form of the cdf. The estimator Y„ is the MVUE and the MLE for 0
when F = F 1 , but is no better than a single observation and has infinite
expectation when F = F3. In contrast, Y„ is unbiased and consistent for 0,
and is robust against outliers in all the three cases. Besides, it is the MLE of
0 when F = F2 . In that case, as we shall see in Example 8.5.1, for large n at
least, Y„ has smaller variance than Y„.

To achieve increased precision when the model assumptions hold, while
retaining robustness, adaptive estimators have been proposed. These take
different functional forms depending on the value of some statistic computed
from the sample itself. Hogg (1974) provides an interesting overview of
adaptive robust procedures.
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EXAMPLE 7.9.3. Suppose we are sampling from a N(µ, 1) population
where we suspect one of the values is from N(µ + 8,1), S * 0. To guard
against this outlier, one could use the adaptive estimator

T = T
o , if max{(Y" - Yl : "), (Y":" —17n)) < c, 	7.9.3

T1 , otherwise,	 	̂ ^

where Tr, r = 0,1 are the trimmed means given by (7.9.2) and c can be a
specified percentile of the distribution of maxi Y - Y" I. This statistic is used
for testing for a single extreme outlier, and its properties and percentiles are
discussed in Barnett and Lewis (1984, pp. 188-189). When there is no outlier,
T given in (7.9.3) is, in fact, unbiased for A.

Sophisticated tools have been used to describe and study robust proce-
dures in general. Huber's (1981) treatise serves as a useful reference on
robust statistics. In an extensive simulation study known as the Princeton
study, Andrews et al. (1972) have investigated the robustness aspects of
several estimators of location based on order statistics.

EXERCISES

1. A deck has N cards labeled 1 through N. The value of N is unknown.
We draw a random sample of size n cards without replacement and the
numbers on those cards are noted.
(a) Show that the maximum number we have observed, T, is a sufficient

statistic for N.
(b) Use T to suggest an unbiased estimator of N.
(c) Determine the variance of your estimator.

(Hint: Look at Section 3.7.)

2. In Exercise 1 suppose the sampling was done with replacement.
(a) Again show that the sample maximum, T, is sufficient for N.
(b) Show that (T" +1 - (T - 1)n +1)/(T" - (T - 1)") is unbiased for N.

3. Let f(y; 0) = g(0)h(y), a(0) 5 y S b(0), 0 E SI, where a(0) decreases
and b(0) increases. Let us assume that g(8) is differentiable and that we
have a random sample of size n from this pdf.

(a) Show that T = max(a -1(Y1: "), b -1(1;, : „))  is the sufficient statistic.

(b) Show that the MVUE of 0 is 9" = T - g(T)(ng'(T )} -1.
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4. Let f(y; 0) satisfy the conditions of Exercise 3.

(a) Show that Q(T; 0) = g(0)/g(T) is a pivotal quantity and determine
its distribution.

(b) Use Q(T; 0) to obtain a 100a% confidence interval for g(0) of the
form (a 1 g(T), a 2 g(T)) and describe how you will determine a l and
a 2.

(c) Choose a l and a 2 such that a 2 — a l is the smallest. The resulting
interval is the shortest one among the 100a% confidence intervals
having the form (a i g(T), a 2 g(T)).

(d) Suppose our interest is to obtain confidence intervals for 1/g(0)
along the above lines. How would you proceed?

(Ferentinos, 1990).

5. (a) Let us take a random sample of size n from the pdf f(y; 0) =
g(0)h(y), a 5 y —< 0, where g(0) is differentiable. Let c(0) be a
differentiable function of 0. Show that the MVUE of c(0) is given by
C(Yn:n) + c' (line n )/ng(Yn:n)h(Yn:^).

(b) Using (a) find the MVUEs of the mean and the variance of the
distribution having pdf f(y; 0) = 2y0 -2 , 0 < y < 0.

6. From a random sample of size n from Uniform(0, 0), let us suppose the
sample maximum is missing.
(a) Show that Yn _ t : n is a complete sufficient statistic for 0.
(b) Let c(0) be a twice differentiable function of 0. Show that the

MVUE of c(0) is given by d(Y, _ i : n ) where

d(y) = c(y) + 2yc'(y)
	y2cn(y)

n-1	 n(n-1)

(c) Obtain the MVUE of the variance of the uniform distribution.

7. Suppose we have a Type II censored sample from Uniform(0, 0) where
only the first r order statistics are observed.
(a) Show that 8 = nYr . n/r is the MLE of 0.
(b) If r = [np], 0 < p < 1, show that B is asymptotically normal. Identify

the norming constants. (Use the informal discussion in Section 1.1. A
rigorous proof of the asymptotic normality of Yr : n may be found in
Theorem 8.5.1.)

8. Assume we are sampling from the Pareto distribution with shape param-
eter 0 whose pdf is given by f(y; 0) = 0y - (e+I), y Z 1.

(a) Find the Fisher information measure contained in the right-censored
sample Y1 : n ,	 , Yr  n.
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(b) Find the MLE of 8 based on the data in (a) and determine its
limiting distribution as r becomes large. What is its limiting vari-
ance?

9. Let Y1 , ... , Y„ be a random sample from the cdf F(y; 0), where 8 is the
location parameter. Find the BLUE of 0 and give an expression for its
variance.

10. Let (Yr , ... , 1", :n)  denote the vector of order statistics from a doubly
censored sample from f(y; 0) = e -(Y	 y z 0.
(a) Determine the MLE of 0.
(b) Determine the BLUE of 0 and finds its variance. Is it also MVUE?
(c) What is Gupta's simple least-squares estimator of 0?

11. Let f(y; 0) = 1, 0 - i 5 y 5 0 + Z. Find the BLUE of 0 based on
Y = (Yr  , ... , Ys . n ) and find its variance.

12. Suppose f(y; 0) = 1, 0 5 y 5 8 + 1. Show that Tn = (Y1: n + Yn : n -
10 is the BLUE of 0.

For Exercises 13-16 assume that the data is from the cdf F of a
two-parameter exponential distribution discussed in Example 7.5.2 where
both the location parameter 0 1 and the scale parameter 82 are unknown.

13. (a) Find the quantile function F -1(p) for all p, 0 < p < 1.
(b) Find the BLUE of F- '(p) based on all order statistics of a random

sample of size n from F and compute its variance.
(c) Another estimator of F-1(p) is Y- : n where i = [np] + 1. Show that

Y : n is an asymptotically unbiased and consistent estimator of F- '(p).
How does it compare with the BLUE?

14. Let the data consist of the entire random sample of size n. Show that T T

is the MVUE of the survival function P(Y > c) where

if c <
1	 c —Y1:n l 1 —	 c	 + n( n —:n 5 5 Y1:n 	Y YI:n)P
n )(	 n(Yn — Yl:n) , if 

Y1

if c >Y1:n+ n(in
-) 1:n).

(Laurent, 1963)
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15. Suppose now we have observed only the first r order statistics of the
random sample.

(a) Are the BLUEs of the parameters also MVUEs?

(b) Find the BLUE of the mean of the distribution.

(c) What is the MLE of the mean?

16. Let 6 1 , 6 2 be, respectively, the MLEs of 01, 0 2 based on Yl .,,, ... ,
They are given by (7.8.1).

(a) Show that W, = n(6 1 — 0 1 )/0 2 is standard exponential and W2 =

r62/02 is I'(r — 1, 1). Express W, and W2 in terms of chi-square
random variables.

(b) Show that W, and W2 are mutually independent. What is the
distribution of WI /W2?

(c) Describe how you may use the conclusions of (a) and (b) to obtain
confidence intervals for 0, and 0 2 .

17. Suppose we are sampling from the Rayleigh distribution with cdf F(y; 0)
=1 — exp( — (y/0)2),y>_0,0>0.
(a) Assuming the data is a Type II censored sample Y, . ,...Y 	 , Y, .,,,

determine 0, the MLE of 0.
(b) Now suppose we have a Type I censored sample being censored to

the right at t. What will be 0 for this situation?

18. Find the MLE of 0 based on a random sample of size n from the
Laplace distribution whose pdf is given by f(y; 0) = z exp(— ly — 01),
— co < y < oo. Is it unique?

19. (a) Show that F-1(p) = 0 1 + 0 2 F(T 1(p), where F(y; 0 1 , 0 2 ) is the cdf of
a distribution with location parameter 0 1 and scale parameter 0 2 > 0 and
Fo(y) = F(y; 0,1).
(b) Give an expression for the BLUE of F -1 (p) based on order statistics
and an expression for its variance when we have a random sample of size
n from N(0,, 0Z).
(c) Under the setup described in (b) obtain the BLUE of F -1 (0.75) —
F -1 (0.25), the interquartile range.

20. The following five observations are the order statistics of a random
sample of size 5 generated from the standard normal distribution using
MINITAB: —1.024, — 0.744, — 0.156, 0.294, and 0.746.
(a) Using the data (Y, . 5 , ... , YS . 5) for all possible r and s such that

1 < r < s < 5, find the BLUEs of the population mean and standard
deviation.
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(b) When the available data is 0'2:5 , Y3:5' Y4:5), find the BLUE of the
60th percentile of the population. What is the variance of your
estimate?

21. (a) Simplify (7.5.17) to determine the coefficients of Y : „ explicitly in
terms of µ i „'s for computing Gupta's estimators it and '6.1.
(b) Suppose we want to determine these coefficients for censored sam-
ples from the normal population. Take n -- 5 and make a table similar to
Table 7.5.1 to display the coefficients of K, 5  when the available data is
,5,:5,' YS :5, for all choices of r and s. Do this for determining both 9 i

and 92.
(c) Make a table similar to Table 7.5.2 giving the variances and covari-

ances of Gupta's estimators for all the censored samples you consid-
ered in (b). Recall that Tables 4.9.1 and 4.9.2 give all the necessary
information.

(d) Using the table you constructed in (c) above, and Table 7.5.2,
compare the variances of k' and 6i , for i = 1, 2.

22. Suppose the observed data consist of just two order statistics Y and
1<i<jS /.

(a) Show that for the linear model given by (7.5.3) and (7.5.4),
(A•E -1A)- WA, M -1 = (MAY W.

(b) Using (a) or otherwise, show that the BLUES B; and Gupta's estima-
tors 0* coincide for i = 1, 2, for this data.

23. Let Y denote a subset of the vector of all order statistics from a random
sample of size n from the cdf Fly; 0), where 0 > 0 is the scale parame-
ter. Find 0, the BLUE of 0, and give an expression for the variance of 9.

24. Suppose we have a Type II censored sample Yr : „, ... , Ys : „ from an
Exp(0) population.
(a) Let B denote the BLUE of 0. Show that

K 
{[/1r:n

  r,r:n

ll 	s -1
(n-r)Yr :n + E Y :n + (n - s+ 1 )Ys:n

JJJJ 	 i =r+1

and var(6) = 0 2/K with K = µ; : „/v, „„ (s — r). Recall that 11.,:n
and o, 	 are given by (4.6.6) and (4.6.7), respectively.

(b) Calculate B*, the simple least-squares estimator of 0.
(Sarhan and Greenberg, 1957)
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25. What is the BLUE of 0 based on a random sample of size 2 from
f(y; 0) = 30 3/y 4, y ? 0?

26. From the uniform population considered in Example 7.5.1, suppose we
have observed the vector of order statistics (Yr :„, ... , Ys : „),1 < r < s < n.
(a) With this data, show that the BLUEs of 0 1 and 0 2 are given by

1
0 1 = 	 ((n — 2r + 1)Y + (2s — n — 1)Yr: „) and

2(s— r)

n+1
J	 ll

e2 = S — r tYs:n — Yr:n1•

(b) Find the variances of 6 1 and 6 2 and cov(6 1 , 6 2 ).
(c) Compare var(6 1 ) in this censored case with the one in the complete

sample case. The ratio of these variances provides the relative
efficiency of 6 1 as a function of r and s.

(d) Show that the relative efficiency of 6 2 in the censored case when
compared to the whole sample case is a function of (s — r).

(e) Simplify 6 1 when n is odd and r = (n + 1)/2. Comment on your
answer.

(Sarhan and Greenberg, 1959).

27. Suppose we are interested in predicting Yk : „ based on the Type II
censored sample Y i i „, ... , Yr :n taken from a two-parameter uniform
distribution introduced in Example 7.5.1 (r < k < n).
(a) Assuming that both the parameters are unknown, find the BLUP of

Yk:n•
(b) What is the BLUE of E(Yk :fl )?

28. The mean-square error (MSE) of a predictor Y while predicting the
random variable Y is defined to E(Y — Y)2 . In the prediction problem of
Example 7.6.1 obtain the MSE of Yk : „ given by (7.6.3).

29. Verify (7.6.4).

30. As in Example 7.4.3, suppose we have observed Y1: „, ... , Yr : „ from a
one-parameter exponential distribution with scale parameter 0. The goal
is to find a prediction interval for Yk : „ where r < k < n. Let

♦ 	 r

T1 = 	 Y	 (:„ + (n — r)Yr :n = E \ n — i + 1)(Y:n
i = 1	 i = 1

represent the total time on test.
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(a) Show that W1 = (Yk : n  Y, : n)/TI is a pivotal quantity whose sur-
vival function is given by

P(WI > w)

r

B(n - k + 1,k - r)

k—r—I	
- r - 	1	 1

X E (-1)`( k	
1 )n-k +i +1 (1+(n-k +i +1)0' 'i=o

(b) Use W1 to obtain a 100a% prediction interval for Yk : n .

(Lawless, 1971)

(c) Another pivotal quantity is W2 = (Yk : n  Yr : n)/Yr : n . Give an ex-
pression for the survival function of W2 for the special case k = r + 1.
Lingappaiah (1973) has obtained an expression for the pdf of W2 for
the general case.

(d) Given a choice between W 1 and W2 to construct a prediction interval
for Yk : n , which one would you choose? Why?

31. (a) Find the probability levels of (Y : „, Y„ _;+ ^ :,,) for 1 i 5 5 and
n = 10, when the intervals are used as confidence intervals for (i) the
population median and (ii) the 25th percentile. Assume the sample is
from a continuous distribution.

(b) Find the probability levels of the intervals considered in (a) when
they are used as tolerance intervals for 80% of the population values.

32. Assuming that we are picking a random sample from a continuous
population, find the smallest sample size n for which the probability level
of the interval (YI : n , Yn : n) is at least 95% when it is used as (i) a
confidence interval for the population median and (ii) a tolerance inter-
val for 50% of the population values.

33. Assume that the population of interest is continuous and approximations
are acceptable!
(a) Determine the probability level of (1.,,, 1) when used as an

interval estimate of F -1(p) when (i) p = 0.5, n = 100, i = 40, j = 60,
(ii) p=0.1,n=100,1 8, j =18.

(b) Suggest a 95% confidence interval for F-1(p) in each of the two
cases in (a).
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34. Let X 1 , ... , X„ be a random sample from an absolutely continuous cdf
F. Let F„(x) represent the empirical cdf of the sample.
(a) Show that as a function of x, F,(x) is a nondecreasing, right-continu-

ous function bounded by 0 and 1.
(b) For a fixed x, determine the distribution of nF,(x). Show that F,(x)

is an unbiased and consistent estimator of F(x). What is the asymp-
totic distribution of F„(x)? Would your answer change if F were
discrete?

(c) Let F„-1(t) = sup{x: F„(x) < t) for 0 < t < 1, and F,,-1 (1) =
This is the inverse empirical cdf or the sample quantile function.
Discuss the properties of F„-1 (t).

35. The following is a classic data set taken from Grubbs (1950). It consists of
a sample of 15 values derived from the observations on the "vertical
semi-diameters" of Venus made by Lieutenant Herndon in 1846.

—1.40, —0.44, —0.30, —0.24, —0.22, —0.13, —0.05, 0.06, 0.10, 0.18,
0.20, 0.39, 0.48, 0.43, 1.01.

Do you consider the sample minimum to be unreasonably low? Assume
that the sample is taken from a normal population.

36. In a comparison of strength of various plastic materials, one characteris-
tic of interest is the percent elongation at break. Grubbs (1969) has
reported the following sample consisting of 10 measurements of percent
elongation at break made on material labeled No. 23 in an experiment.

2.02, 2.22, 3.04, 3.23, 3.59, 3.73, 3.94, 4.05, 4.11, 4.13.

(a) Draw the Q-Q plot assuming the sample is from a normal popula-
tion.

(b) Test whether the sample minimum is an outlier.
(c) Delete the second smallest value from the data set and repeat (b).
(d) Comment on the outcomes of the analyses in (b) and (c) above.

(Grubbs performs a test to decide whether the lowest two observa-
tions are outliers to conclude that both of them are.)

37. The following data taken from Grubbs (1971) represent the mileages at
the time of failure of 19 vehicles: 162, 200, 271, 302, 393, 508, 539, 629,
706, 777, 884, 1008, 1101, 1182, 1463, 1603, 1984, 2355, 2880.
(a) Draw a Q-Q plot to check whether the data can be thought of as a

random sample from a two-parameter exponential distribution.
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(b) Assuming the data represent a random sample from a two-parameter
exponential distribution, obtain 95% confidence intervals for 0 1 , the
location parameter and 02 , the scale parameter.

(c) Also obtain the MVUE of the probability that the mileage at
breakdown of a randomly chosen vehicle from this population ex-
ceeds 200 miles.

38. Let Y1 , ... , Y" be n independent continuous random variables such that
all but Y" have cdf F and the outlier has cdf F*. Let f and f* be the
pdfs of F and F*, respectively.
(a) Show that the joint pdf of the order statistics Yi : ", ... , Y" : " is given

by

n
h(Y1,..., y") _ (n — 1)!f(Y1) ... f(Y") E 

f* (Y')
 ^

i=1 f(Yi)
yt <y2 < ... <yn.

(b) Using the ideas that led to (2.2.13), show that the cdf of Y :  n is given
by

P(Y:n	 = (7:11)(F(Yni-1{1
 — F(Y)}" iF

*(Y)

n- 1

^ (n 
_

+ 	r 1 ) {F( y) } r{1 — F( y)}" - 1 - r

r=i

whenever 1 < i < n. Also obtain expressions for P(Yi: " s y) for
i =1 and i = n. Note that the binomial sum on the right is nothing
but Fi : n - 1( y). This is an extension of the second relation in Exercise
2.23 to the case of a single outlier.

(David and Shu, 1978)
(c) Find the pdf of Y : "•

39. In Exercise 38, let us assume F is Exp(1) cdf and F* is Exp(S) for some
S > 0.
(a) Show that the probability that Y : " is the outlier is given by

r(n)r(n — i + (1/8))

P(1''" = Y" ) 	Or(n + (1/15))r(n — i + 1)

(b) Hence show that when 8 > 1, P(Y,• : " is the outlier) increases as i
increases.

(Kale and Sinha, 1971)
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(c) Suggest a test procedure for testing the hypothesis that one of the n
observations comes from a population with mean S > 1.

40. Show that the estimator T given by (7.9.3) is an unbiased estimator of µ
when S = 0, that is, when there is no outlier.

41. Let Y.',), denote the jth order statistic from a random sample of size n ;

from the two-parameter exponential distribution f(y; 0 ; , r) =
o exp(— (y — 0j)/Q ), y > 0 u > 0, for i = 1,... , k. Let Ek= I n, = n
and YI : n denote the smallest value in the entire data set consisting of all
the n observations. Our goal is to test the null hypothesis H 0 : 0, = • • •
= Bk.

(a) Show that the likelihood ratio test reduces to a test procedure based
on the statistic

k	
(`''	 )/(^i=Ini Yl:n ; — YI:n	 k— 1 ) 

Ek E" (Y^'^ — Yl:()n ; )/(n — k) •t=1 j=l	 j:n ; 

(b) Show that when Ho is true, T has an F,uk _ I> un _k)) distribution. If
the alternative hypothesis just says that H0 is false, when would you
reject Ho?

(c) What changes would you make in (a) and (b) when we have Type II
censored samples Y n) , , 1 < j < rj , where rj < n ; for i = 1, ... , k.

(Sukhatme, 1937; Khatri, 1974)

T=

 





CHAPTER 8

Asymptotic Theory

8.1. NEED AND HISTORY

So far all our attention has been directed at the exact distribution theory for
order statistics or some special functions of order statistics. An exception was
when we considered approximations to the moments of order statistics. Our
experience with the finite sample distribution theory shows time and again
that the exact cdf is computationally messy except for some very special
cases. This is true even when the sample size is small. Thus, one would
naturally be interested in the large-sample behavior with the hope of finding
some simple cdfs as good approximations to the actual cdf of the statistic of
interest.

There are several convergence concepts associated with the limiting behav-
ior of a sequence of random variables. Convergence in distribution or weak
convergence, convergence in probability, and almost sure convergence are the
prominent ones. In the case of X,,, the sample mean, these concepts lead us
to the classical central limit theorem, weak law of large numbers, and strong
law of large numbers, respectively. In this elementary introduction we will be
mostly concerned with the weak convergence results for the order statistics.
Even then, we present only the basic results. In the context of weak
convergence, we are interested in identifying possible nondegenerate limit
distributions for appropriately normalized sequences of random variables of
interest. These limiting distributions can be of direct use in suggesting
inference procedures when the sample size is large.

As usual, we begin with a random sample X 1 , ... , X„ from a population
whose cdf is F. The asymptotic behavior of a single order statistic X, : ,,
depends on how i relates to n in addition to F. For example, the large-sam-
ple behavior of the sample maximum is much different than that of either the
sample minimum or the sample median. We will demonstrate this first for
the standard exponential cdf in Section 8.2. In order to present general
results in a systematic manner, we consider separately three distinct, non-
exhaustive situations where X, is classified as one of the following:

205
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(i) extreme order statistic when either i or n — i is fixed and the sample size
n —► 00, (ii) central order statistic when i = [np] + 1, 0 < p < 1, where [•]
stands for the greatest integer function, and (iii) intermediate order statistic
when both i and n — i approach infinity, but i/n —► 0 or 1. We treat the
extreme case in Sections 8.3 and 8.4; in the former we consider the sample
maximum and minimum, and in the latter we look at other extreme order
statistics and their limiting joint distributions. Section 8.5 is mainly concerned
with the joint behavior of central order statistics. Toward the end of that
section we give a brief account on intermediate order statistics. The last
section deals with the asymptotic distribution of linear functions of order
statistics commonly known as L statistics. In Chapter 7 we have seen that
these statistics can provide efficient and robust estimators of certain popula-
tion parameters.

One important message about extreme order statistics is that if the limit
distribution exists, it is nonnormal and depends on F only through its tail
behavior. Early references include the work of Frechet (1927), who identified
one possible limit distribution for X,, : „. Soon after, Fisher and Tippett (1928)
showed that extreme limit laws can be only one of three types. For the
normal population, Tippett (1925) had earlier investigated the exact cdf and
moments of X and W„, the range. His heroic work involved compli-
cated numerical integration and simulation techniques. He obtained very
precise tables for the cdf of X„ : „ and for E(W„) for several values of n.
von Mises (1936) provided simple and useful sufficient conditions for the
weak convergence of X„ : „ to each of the three types of limit distributions.
Gnedenko (1943) established a rigorous foundation of the extreme value
theory when he provided necessary and sufficient conditions for the weak
convergence of the sample extremes. His work was refined by de Haan
(1970). Smirnov (1949) studied in depth the asymptotic behavior of Xi: „
when i or (n — i + 1) is fixed. Another important contributor, mostly on the
statistical aspects, is Gumbel, who worked on this topic during the middle
part of this century. Much of his work is reported in Gumbel (1958).

In contrast to extreme values, the asymptotic distribution of a central
order statistic is normal under mild conditions. Stigler (1973a) notes that as
far back as 1818, Laplace had shown that the sample median is asymptoti-
cally normal! More than a century later Smirnov (1949) obtained all possible
limit distributions for central order statistics. Initial work on intermediate
order statistics was done by Chibisov (1964), Daniell (1920) pioneered the
systematic study of L statistics. But his work went unnoticed for quite some
time. Stigler (1973a) summarizes Daniel's contribution, while providing a
historical account of robust estimation.

There are several excellent books which deal with the asymptotic proper-
ties of order statistics and L statistics. Galambos (1987), Resnick (1987), and
Leadbetter, Lindgren, and Rootz6n (1983) discuss various asymptotic results
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for extreme order statistics. Castillo (1988) presents some statistical applica-
tions of the extreme value theory. Shorack and Wellner (1986), and Serfling
(1980) are good reference sources on central order statistics and on L
statistics. The recent book by Reiss (1989) investigates various convergence
concepts and rates of convergence associated with all order statistics.

8.2. EXPONENTIAL ORDER STATISTICS

Before discussing the possible limit distributions for order statistics from an
arbitrary cdf, we first consider the asymptotic results for the exponential
parent distribution. These results, while being easy to prove, give us an idea
about the nature of the limit distributions.

With no loss of generality we assume the scale parameter 0 = 1 and recall
once again the ever useful representation for exponential order statistics
given in Theorem 4.6.1. It expresses X,.,, as a linear function of i.i.d. Exp(1)
random variables denoted by Z r 's as follows:

where

d n
Xi:n	 E ar iZr ,

r=1

( 1/(n - r + 1),
a _—

1 < i < n,	 (8.2.1)

1 <r < i,
r > i.

Let us now begin with the lower extremes. From (8.2.1), it is evident that
since Xi  Z 1/n, nX1: n d= Z 1 and, hence, nX1: n -d̂  Z 1 as n --0 co. More
generally, when i is held fixed, X;:n - {(Z 1 /n) + • • • +(Z ;/(n - i + 1)))
and, therefore, nXi ,„ 4 (Z 1 + Z2 + • • • +Z;). In other words, the limit
distribution of nX;:n is I'(i,1), for any fixed i.

In the case of upper extremes, it is more convenient to deal with the cdf.
For the sample maximum,

P(Xn:n - log n<x)= 
{1 -exp[ -( x + log n)]) n ,	 x> - log n

0,	 x < -log n

= (1 - e -X/n) n , 	 x > -log n

-+ exp{ -exp( —x)), 	 - CO <x< CO .

Also, the limit distribution of the ith maximum, X„ _;+ 1: n, is related to the
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limit distribution of X„ ; „ for any fixed i. We will discover the precise
relationship in the general context in Section 8.4.

Now suppose i -0 co and n — i co. This includes both the central and
intermediate cases. From (8.2.1) it is clear that in this situation we have a
sum of i independent random variables, none of which is dominant. We can
apply Liapunov's form of the central limit theorem to the sum in (8.2.1) and
conclude that the limit distribution of (X; : „ — µ;  „)/Q; :  is standard normal.
This is pursued in Exercise 1.

Before developing the general theory, let us summarize the conclusions of
our experience with the exponential parent distribution. First, the limit
distribution of X;: „ need not be normal, in the extreme cases at least.
Second, the upper and lower extremes may have different limit distributions.
Third, in the extreme case, the limit law depends on i. In the next three
sections we will explore further these findings when F is an arbitrary
(discrete or absolutely continuous) cdf.

8.3. SAMPLE MAXIMUM AND MINIMUM

We now present a detailed discussion of the possible nondegenerate limit
distributions for X, 	 then briefly go over parallel results for X 1

 it would be enough to consider only the maximum, since the
sample minimum from the cdf F has the same distribution as the negative of
the sample maximum from the cdf F* where F*(x) = 1 — F(—x).

Since F„ : „(x) = {F(x)}", X„ : „ ► F-I(1), which is the upper limit of the
support of F. In order to hope for a nondegenerate limit distribution, we will
have to appropriately normalize or standardize X. In other words, we look
at the sequence {(X„ : „ — a„)/b„, n z 1) where a n represents a shift in
location and b„ > 0 represents a change in scale. The cdf of the normalized
X„ : „ is F"(a„ + b„x). We will now ask the following questions:

(i) Is it possible to find a„ and b„ > 0 such that F"(a„ + b„x) —> G(x)
at all continuity points of a nondegenerate cdf G?

(ii) What kind of cdf G can appear as the limiting cdf?

(iii) How is G related to F; that is, given F can we identify G?

(iv) What are appropriate choices for a„ and b„ in (i)?

In order to answer these questions precisely and facilitate the ensuing
discussion, we introduce two definitions.

DEFINITION 8.3.1 (domain of maximal attraction). A cdf F (discrete or
absolutely continuous) is said to belong to the domain of maximal attraction
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of a nondegenerate cdf G if there exist sequences (an) and (bn > 0) such that

lim Fn(a n + bn x) = G(x)
n + co

(8.3.1)

at all continuity points of G(x). If (8.3.1) holds, we will write F E gi(G).

Let W be a random variable whose cdf is G. Then, asserting that
F E 9(G) is equivalent to saying (Xn :n - a n )/bn -°' W.

DEFINITION 8.3.2. Two cdfs F 1 and F2 are said to be of the same type if
there exist constants a o and bo > 0 such that F 1(ao + bo x) = F2(x).

If random variables W 1 and W2 with respective cdfs F 1 and F2 are linearly
related, then F 1 and F2 are of the same type.

Now suppose (Xn:n - a n )/bn -d4 W where G is the cdf of W. Let {a n} and
(ßn > 0) be two sequences of real numbers such that ßn/bn --> b o and
(an - an)/bn - ao as n --> 00. Then, (Xn :n - an)/ßn d-' (W - ao)/b o , whose
cdf is G(ao + bo x). That is, the limit distributions of (Xn  - a n )/b„ and
(Xn :n - an)/(3n are of the same type. Conversely, it can also be shown that if
Plan + bn x) -0 G(x) and Fn(a n + ß„x) -0 G o(x), then there exist con-
stants ao and b o > 0 such that ßn /bn -> b o and (an - a n )/b„ --0 a o and
Go(x) = G(a o + b o x). [See de Haan (1976) or Galambos (1987, p. 63) for a
formal proof.]

The informal discussion just given justifies the following observations.
First, the choice of norming constants is not unique. Second, a cdf F cannot
be in the domain of maximal attraction of more than one type of cdf. Thus,
we will now turn our attention to identification of the types of G's that are
eligible to be the limiting cdfs in (8.3.1).

Fisher and Tippett (1928) identified the class of such cdfs by a clever
argument. First let n = mr, where m and r are positive integers. When
m -► 00, while Plan + bn x) -* G(x), it follows from the above discussion
that [F`n(a,,, r + bn, r x)]r -0 [G(a° + b°x)]r, for some constants a° and b° > 0.
Thus, G must be such that

Gn(an bnx) = G( (8.3.2)

for some constants a° and b,° > 0, for all x and n z 1. The cdfs satisfying
(8.3.2) are called max-stable cdfs. The solution to (8.3.2) depends on whether
b ° > 1, bn < 1, or bn = 1. Frechet (1927) identified the solution in the first
case, and shortly thereafter Fisher and Tippett (1928) characterized all
possible solutions to (8.3.2). The result is summarized below.
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Possible Limiting Distributions for the Sample Maximum

Theorem 8.3.1. If (8.3.1) holds, the limiting cdf G of an appropriately
normalized sample maximum is one of the following types:

0 ,
G1(x ' a) = { exp{_x -a) ,

G2(x;a) = { exP{ — ( —x ) a ) ,

1,

G3 ( x) = exp{ —exp( —x) },

x 
x >0; a>0

x < 0; a >0
x 
-0° < x < CO.

(8.3.3)

(8.3.4)

(8.3.5)

The first two limiting cdfs above involve an additional parameter a which
is related to the tail behavior of the parent cdf F. The three cdfs G 1 , G2, and
G3 have names attached to each of them. The first one is referred to as the
Frechet type, G2 is called the Weibull type, and G3 is often referred to as the
extreme value cdf. Note that the negative of a Weibull random variable with
shape parameter a has cdf G 2(x; a).

The three types of cdfs given in Theorem 8.3.1 appear on the surface to be
unrelated. However, they can be thought of as members of a single family of
distributions. For that purpose let us introduce a cdf G(x; 0), which has the
following form on its support:

G(x;0) = exp{—(1 +x0_')
_ B} , 1 + x0 - ' > 0; —co < 0 < CO.

For 0 > 0, G(x; 0), and G 1(x; 0) are of the same type. When 0 < 0, G(x; 0)
and G 2(x; —0) are of the same type. As 0 --0 ± 00, G(x; 0) —> G 3(x). The cdf
G(x; 0) is known as the generalized extreme value cdf, or as the extreme value
cdf in the von Mises form.

We have now answered question (ii) posed in the beginning of this section
by showing that if F E .9(G), then G is either G 1 or G2 or G3. We will now
answer question (i) by presenting a set of necessary and sufficient conditions
on F such that F E .(G1), i = 1, 2, 3. While doing so, we will also answer
question (iii).

Theorem 8.3.2 (necessary and sufficient conditions for weak convergence).

(i) F E g(G1) iff F- '(1) = + 00 and there exists a constant a > 0 such
that

lim 
1 - F(tx) 

- x -a(= - log(G1(x+a)))	 (	 )

1-.0. 1 - F(t)	
836

for all x > 0. Further, if (8.3.6) holds, G 1(x) = G 1(x; a), and we
write F e .(G 1(x; a)).
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(ii) F E . (G 2 ) iff F -1(1) is finite and there exists a constant a > 0 such
that for all x > 0,

1 - F(F- '(1) - ex)
lim 	  = x " ( = 

-
log GZ(-x;a)). (8.3.7)

E-•o+ 1 — FV -1 (1) — e)

If (8.3.7) holds, G 2(x) = G 2(x; a), and we write F E r(G 2(x; a)).

(iii) F E ß(G 3) iff E(X I X > c) is finite for some c < F -1 (1), and for all
real x,

1- F(t + xE(X - tIX > t))
lim 	  = exp(-x)(= -logG 3 (x)),

t-•F - 'U)	 1 - F(t)
(8.3.8)

where X represents the population random variable having cdf F.

The conditional mean E(X - t I X > t) which appears in (8.3.8) is known
as mean residual life in the reliability literature.

This result is adapted from Theorems 2.1.1-2.1.3 and Theorem 2.4.1 in
Galambos (1987). The necessary and sufficient conditions given in the above
theorem are equivalent to the original conditions used by Gnedenko (1943)
to prove the domain of attraction results. Note that when G = G,, the upper
limit of the support of F should be infinite and when G = G2, it should
necessarily be finite. Sometimes, this is helpful in eliminating either G, or G2
as the possible limit distribution.

Theorem 8.3.2 answers question (i) completely by providing a set of
necessary and sufficient conditions on F so that {(Xn:n - a n)/bn) can be
made to converge to a nondegenerate limit distribution. We will now present
an example of an F for which none of these conditions hold.

EXAMPLE 8.3.1. Let F(x) = 1 - (log x) - ', x >_ e. Since F -1 (1) = +^,
F E g(G 2 ). Also, since

	1 - F( tx )	 log(t)

	

lym 
1- F(t)	 tll.̂  log( tx) 

- 1,

(8.3.6) fails to hold. Thus, F 9(G 1 ). Finally,

E(XIX > c) = 1 °°(log x) -2 dx
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is infinite for all c and, hence, from part (iii) of Theorem 8.3.2, F e
3(G3). Thus, we conclude that there do not exist a„ and b„ > 0 such that

(X,, : ,, - a„)/b„ has a nondegenerate limit distribution.

The necessary and sufficient conditions for F E 2(G) as given in
(8.3.6)-(8.3.8) are quite often difficult to verify. For that reason, we now
present sufficient conditions due to von Mises (1936), which are easy to check
and are not very restrictive. But they are applicable only for absolutely
continuous parent distributions.

Theorem 833 (von Mises' sufficient conditions for weak convergence).
Let F be an absolutely continuous cdf and let h(x) = f(x)/(1 - F(x)).

(i) If h(x) > 0 for large x and for some a > 0,

lim xh(x) = a,	 (8.3.9)

then F E g(G 1(x; a)).

(ii) If F-1(1) < OD and for some a > 0,

Iim (F-1(1) - x)h(x) = a,	 (8.3.10)
x -•F -1(1)

then F E .(G2(x; a)).

(iii) Suppose h(x) is nonzero and is differentiable for x close to F -1(1)
[or for large x if F-1(1) = m). Then, F E £(G 3) if

lim	 d { 	 1 j - O.
x^F ^(1) dx 1 h(x)J

(8.3.11)

A simple proof of this result is given in de Haan (1976). The function h(x)
appearing in the foregoing is the failure rate function which we have already
seen in earlier chapters. (See, for example, Chapter 2, Exercise 15.) It has a
physical interpretation in the reliability context when F is the cdf of a
life-length distribution.

Finally, we answer our last question regarding possible choices for the
norming constants, a„ and b„. Determining their values is as important as
claiming their existence. These constants, while are not unique, depend on
the type of G. Convenient choices, in general, are indicated in the following
result.
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Theorem 8.3.4 (norming constants). We can choose a„, b„ > 0 so that
F„(a„ + b„x) -' G(x) as follows:

(i) a„= 0,b„=F- '(1-n - ') if G=G 1 .
(ii) a„ = F- 1(1), b„ = F - 1 (1) - F - '(1 - n - ') if G = G2.

(iii) an = F- '(1 - n - '), b = E(X - a„IX > a„) or F - 1 (1 - (ne) - 1 ) -
F- '(1 - n - ') if G = G3.

Further, if (8.3.11) holds, one can choose b„ = (nf(a„)) -1

Before looking at some examples, we present parallel results for the
sample minimum. Theorem 8.3.5 describes the class of limiting cdfs for the
normalized minimum. Theorem 8.3.6 gives necessary and sufficient condi-
tions for F to be in a domain of minimal attraction, and suggests some
convenient choices for the norming constants.

Asymptotic Distribution of the Sample Minimum

Theorem 8.3.5. Suppose there exist constants an and b,* > 0, and a
nondegenerate random variable W* such that (X I , n - an)/b,* 4 W*. Then,
G*, the cdf of W* must be one of the following types:

(i) Gi (x; a) = 1 - G,(-x; a),
(ii) GI (x; a) = 1 - G 2( -x; a),

(üi) G3(x) = 1 - G 3(-x),

where G I , G2, and G3 are given by (8.3.3), (8.3.4), and (8.3.5), respectively.
Note that GZ(x; a) is the Weibull cdf with shape parameter a.

Theorem 8.3.6 (conditions for convergence and norming constants).

(i) F E .0(Gi (x; a)); that is, the cdf of W* is G* ( x ; a), iff F- 1 (0) =
-00 and

F(tx)

lim F( t)
	  = (8.3.12)

for all x > 0. One can choose an to be 0 and bn to be the absolute
value of F-1(1/n).
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(ii) F E 9(G1(x; a)) iff F -1(0) is finite and

F(F -1 (0) + ex)

e—.O F(F-1 (0) + E)
	  = x",	 (8.3.13)

for all x > 0. Here, one can choose a: = F -1(0) and brt = F- '(1/n)
— F- '(0).

(iii) F E 0(G3) iff E(XIX 5 c) is finite for some c > F- '(0) and

lim 
F(t +xE(t —X I

X 50) = exp(x), (8.3.14)
r -•F''(o)	 F(t)

for all real x, where the random variable X has cdf F. If F E
.g(G3 ), convenient choices for the norming constants are a^ =
F- '(1/n) and b,* = E(a: — XIX 5 an).

EXAMPLE 8.3.1 (continued). We have already seen that, when F(x) = 1
— (log x)', x >— e, the sample maximum cannot be normalized so that the
limiting distribution is nondegenerate. How about the sample minimum? For
that purpose, let us verify that (8.3.13) holds by using L'Hospital's rule.

F(e + ex) ' 	xf(e + ex)
	 —

E. F(e + e)	 eylö-^ 	 f(e + e)

= lim
e	 (e + ex){log(e + ex)

= x.

Thus F E g(G1(x; 1)). Since the quantile function is given by F- '(u) _
exp{1/(1 — u)), 0 < u 5 1, a* = e and bn = exp{n/(n — 1)) — e.

EXAMPLE 8.3.2 (Weibull distribution). Let F be a Weibull (a) cdf where
a is the shape parameter, that is,

F(x) = 1 — exp(—x"),	 x > 0, a > 0.

Note that F(x) = GI (x; a), and its failure rate function is h(x) = ax" -1 .
Further, the quantile function is F- '(u) _ { — log(1 — u)}ß, where ß = 1/a.

In the case of the sample maximum, we can apply part (iii) of Theorem
8.3.3 to conclude that (8.3.11) holds. That is, F E .(G3). From part (iii) of
Theorem 8.3.4 it follows that a„ = (log n)ß and b„ = {nf(a„)} - ' _
((log n)ß - ')/a. Note that the other two forms for b„ are not this easy to
evaluate even though any one of these three forms is acceptable. However,

x(e + e) {log(e + e)}
 2

}Z
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when a = 1 or when F is a standard exponential cdf, all these three forms
for bn do coincide, their common value being 1. We conclude that, with
ß = 1/a, (a(Xn:n — (log n)ß)/(log n)ß - ') - W, whose cdf is G 3 . In Section
8.2 this is what we observed for the special case of a = 1.

For the sample minimum, note that

P(n l/"Xt:n > x) = {1 — F(x/n'/")}
n

= exp( —x"),	 x > O.

Hence, with an = 0 and b,* = n -'/", (X ^ : n — an)/bn has the cdf G' (x; a)
for every n (not just in the limit). Note that GZ(x; a) is a min-stable cdf. (See
Exercise 2.)

EXAMPLE 8.3.3 (Pareto distribution). Suppose F is a Pareto (0) cdf
where 0 is the shape parameter so that 1 — F(x) = x -B, x >— 1, 0 > 0. For
determining the weak convergence of the sample maximum, this cdf is an
ideal candidate for verifying (8.3.6) since for x > 0,

1 — F(tx) — _ e

1 — F(t) — x

whenever t > max(1, 1/x). Thus, (8.3.6) holds with a = 0, which means
F E .(G I(x; O)). From Theorem 8.3.4, we obtain a n = 0 and bn = F -1 (1 —
n ') = n'/B. In other words, the limiting cdf of n - '/ °Xn:n is G I(x; 0). But
we have already seen this result before. (Can you recall?) For the limit
distribution of X i : n , on using L'Hospital's rule, it follows that (8.3.13) holds
with a = 1. Hence, F E g'(GZ(x; 1)) and an = 1 and bn = (1 — n -1 ) -0 /e)
— 1.

EXAMPLE 8.3.4 (standard normal distribution). Let F(x)_ 1(x), the
standard normal cdf. Since F - '(1) = +03, its egr(G 2 ). On using L'Hospital's
rule, we obtain, for x > 0,

1 — (LI ( tx)	 x(p(tx)

i ''m 1 — ^(t) 
= lim 

cio(t)

oo, x<1,
= 1, x = 1,

0, x > 1.

This means (8.3.6) does not hold and, hence, it eo(G 1 ). Now the only
possibility is G3 . The necessary and sufficient condition (8.3.8) for it e
. (G 3) is hard to verify and, thus, we will try to check whether the von Mises
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sufficient condition (83.11) holds. For that purpose, let us note that

d	 1	 d 1 -^ 

	}

	(x) 	x^l - ^(x)}
	1. (8.3.15)

dx ( h(x) } dx 1 v(x) 	 w(x)

Use L'Hospital's rule twice while taking the limit of the first term in (8.3.15)
as x co to conclude that (8.3.11) holds. Hence, e E 2(G 3) and by the
symmetry of the standard normal pdf, clearly 40 E ß(G3 ).

What about the norming constants? Since the quantile function fi - '(u)
does not have a closed form, a,, = " 1(1 - n - ') cannot be explicitly exhib-
ited, even though it can be computed for any given n. As suggested in several
references, one may take

1 log(47 log n)
a„ = af6i71 - 2

210 n

and
b„= 1/V2 log n

These are not the only choices, nor are they the best ones. (Of course, we did
not tell you what one means by "best.") Hall (1979) has shown that the best
rate of convergence of sup_„ X < ^I4)"(a„ + b„x) - G 3(x)I is achieved when
a„ and b„ are chosen such that nq(a„) = a„ and b„ = a,V. Let us now see
how these relate to the choices suggested in Theorem 8.3.4.

From (8.3.15) and the fact that (8.3.11) holds, we can infer that 1 -
4)(x) = q(x)/x for large x. Thus, instead of using a„ = 10'0 - n - ') or
Ca„) = 1 - 1/n, one could use v(an)/an = 1/n or, equivalently, mp(a„) =
a„. This was the choice of Fisher and Tippett (1928) also. Since the von Mises
sufficient condition holds, one can take b„ = (mp(a„)) -1 , which means b„ =
an-1 with this choice of a„. Hall showed that even with this optimal choice,
the rate of convergence is rather slow (of the order of log n).

Fisher and Tippett (1928) were the first to notice the slow rate of
convergence of 4"(a,, + b„x) to G3(x). They showed that the first four
moments of the cdf (1)"(a” + b„x) are closer to those of G2(x; a) for a
suitably chosen a rather than to those of G3(x), even for n as large as 1000!
This disparity between the so-called penultimate and ultimate limit behavior
of the sample extremes in general has been the subject of some serious
studies in recent years.

Sample Extremes from Discrete Distributions

All the examples we have discussed so far have dealt with absolutely
continuous cdfs, even though our necessary and sufficient conditions in
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Theorem 8.3.2 do not require F to be absolutely continuous. However, most
of the well-known discrete F's do not satisfy any of these conditions. Let us
now see why. First, if F has only a finite number of points in its support,
clearly X,, : „ will always take a finite fixed number of values. Thus the limit
distribution would necessarily be degenerate. Distributions like the discrete
uniform and binomial fall into this category.

When F has an infinite number of points in its support, the following
necessary condition for the validity of (8.3.1) will disqualify some of our
favorite distributions.

Theorem 83.7 (a necessary condition for weak convergence). If (8.3.1)
holds and F is discrete, then as x -0 F-1(1), h(x) -+ 0 where h(x) = f(x)/
{1 - F(x - ))•

A short proof of this theorem can be found in Galambos (1987, p. 84). For
discrete distributions with nondecreasing failure rate (see Chapter 3, Exer-
cise 18 for a definition), this implies that X cannot have a nondegenerate
limit distribution. The geometric and the negative binomial distributions
belong to this class. A version of Theorem 8.3.7 applicable to sample minima
can be used to claim that even X 1: „ from these distributions do not have
nondegenerate limit distributions.

However, there do exist discrete distributions in the domain of attraction
(maximal or minimal) of an extreme value distribution. Below is an example
for the sample maximum.

EXAMPLE 8.3.5 (discrete Pareto distribution). Let F(x) = 1 - [x] -°, x
1, 0 > 0, where [] represents the greatest integer function. Then for

x>0,

1 - F(tx)	 [t] 19

1-F(t)	 [tx] 1
if t > max( 1,1 /x).

Clearly, this tends to x -° as t -> 00. Since (8.3.6) holds with a = 0,
F E gi(G I(x; 0)) as in the case of absolutely continuous Pareto distribution.
The convenient norming constants are a„ = 0 and b„ = F- '(1 - n - ') =
(n" ° +1)=n 176 .

8.4. OTHER EXTREME ORDER STATISTICS

We will now take up the question of possible nondegenerate limit distribu-
tions for the top ith or the bottom ith order statistics. We will also look at
the asymptotic joint behavior of the extreme i order statistics when i is held
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fixed. Finally, we will study the asymptotic joint distribution of X 1: „ and
X„ : „. This will facilitate the job of finding the asymptotic distribution of the
sample range W„ and the midrange V„.

Let us begin by recalling an elementary result in calculus, which turns out
to be extremely useful in our discussion.

Lemma 8.4.1. Let {c„, n >_ 1) be a sequence of real numbers. Then, as
n-000, c„	 c iff (1- c„/n)"-> exp( - c).

For a fixed x, let us define

c„ = n{1 - F(a„ + b„x) },	 (8.4.1)

where an and b„ > 0 are the norming constants satisfying (8.3.1); that is,
F"(a„ + b„x) -► G(x). This can be expressed in terms of c„ as (1 - c„/n)”
--0 exp(log G(x)). Then, from Lemma 8.4.1, it follows that for a given x,
(8.3.1) holds iff c„ -> - log G(x). Thus, (8.3.1) is equivalent to saying that c„,
given by (8.4.1), converges to - log G(x) at all continuity points of G(x) as
n -+ 00. Now consider

P(Xn —i+l:n < a„ + b„x)

_ E (r )(Ran + b„x)}r{1 — F(a„ + b„x)}
n-r

r=n -i +1

i - 1_ E (s )(c„/n)s(1 — c„/n) " -s,
s =0

where c„ is given in (8.4.1). Clearly, this is the cdf of a Bin(n, c„/n) random
variable evaluated at (i - 1), which converges to the cdf of a Poisson
(-log G(x)) random variable iff (8.3.1) holds. (Show it!) This simple argu-
ment yields the following result.

Theorem 8.4.1 (asymptotic distribution of an extreme order statistic). For
any real x, P(X„ : „ 5 an + b„x) -+ G(x) as n -+ 00 iff for any fixed i > 1,

i -1

P(Xn-i+1:n 5 an + b„x) --► E G(x){ —log G(x) } r/r!. (8.4.2)
r-o

Thus, (8.3.1) holds, or F e r(G) iff for some finite i, (8.4.2) holds for all x.

The above theorem establishes the strong connection between the asymp-
totic behavior of X„ : „ and of X,-i+ 1: „. Note that the norming constants are
the same and the function G(x) in (8.3.1) and (8.4.2) is the same. Thus,
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(Xn_i+1:n - an )/bn can converge in distribution to a random variable whose
cdf can be only one of the three types as given by (8.4.2) with G = G 1 , G 2 , or
G3. Theorem 8.3.2 provides necessary and sufficient conditions, and Theorem
8.3.3 has sufficient conditions for this convergence. The norming constants a n
and bn to be used in (8.4.2) are provided in Theorem 8.3.4. For example,
when F E 0(G 3), as in the case of a normal parent,

P( X	 - a b < x = ex - ex	 x 
i-1 exp( -rx)

lim
ym (( n -i+l:n  a n )/ b„	 )	 p{	 p(	 )} ^ 	n 	 r!r=0

where a n = F -1(1 - n -I ) and bn = E(X — an IX > a n ).
The results for the ith order statistic are similar when i is fixed. When

F E 0(G*), for any finite i > 1,

i-I

P(Xi:n > an + b,*x)	 E ( 1 — G*(x) ){—log [1 — G*(x)]} r/r!. (8.4.3)
r = 0

Asymptotic Joint Distribution of Extreme Order Statistics

Now let us look at the joint asymptotic behavior of the top i (>_ 2) order
statistics. To make our proofs simpler, let us assume F is absolutely continu-
ous and that appropriate von Mises sufficient conditions of Theorem 8.3.3
hold. It then follows that the pdf of (Xn:n - an )/b„ converges to g(x), the
pdf of G(x). [Even though this is quite intuitive, the proof is quite involved;
see Resnick (1987, pp. 86) or Galambos (1987, pp. 156).] This means

him nbnf(an + bnx){F(an + bnx)}n 1 = g(x),
n -+00

which, in view of (8.3.1) implies

lim nbn f(a n + bn x) = {g(x)/G(x)}.	 (8.4.4)
n-0.0

The joint pdf of (Xn:n - a)/b+ , (Xn i +1:n - an)/bn can be ex-
pressed as

J 1F(an + bnxi )}n-^ rl (n - r + 1)bnf(an + bn Xr),	 x 1 > x2 > • . • > Xi .
r=1

From (8.3.1) and (8.4.4) we now can conclude that the above joint pdf
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converges to

T
i

g(1 , 	 f)(X1,..., xi) = G(xi) 1 1 (g(xr)/G(xr) }e
r=1

x l > x2 > • • • > x i .

(8.4.5)

Similarly, in the case of lower extremes, the asymptotic joint pdf of
(X1 : n — a„ )/b,* , ... , (Xi : n — a,*,)/bn is given by

g(i....,i )
(xl,..., x) _ (1 - G*(x ; )} 1 1 {g*(xr) /l1 - G*(xr)J }r

r=1

x 1 < x2 < ••• < x i. (8.4.6)

Let us summarize these facts in the form of a theorem, which holds even
when F fails to satisfy the von Mises conditions.

Theorem 8.4.2. If (X„ : „ - a„)/b„ has a nondegenerate limit distribution
with cdf G as n -0 cc, then the joint pdf of the limit distribution of
(Xn:n - an)/b , •^(X„-i+l:n - a„)/b„ is given by (8.4.5). Similarly, if
(X1 .„ - an)/b,* has a nondegenerate limit distribution with cdf G*, then the
joint pdf of the limit distribution of (X 1: „ - ate)/b*, ... , (X - a*)/b,* is
given by (8.4.6).

We can obtain the limiting marginal pdf of the ith upper order sta-
tistic either from the joint pdf given by (8.4.5) or from its limiting cdf
given by (8.4.2). Either way we obtain the pdf of the limit distribution of
(Xn—i+1:n — an)/b„ as

( -log G(x ; ) }

i- 1

g(i)(xi) - 	(i — 1)!	 g(xi).	 (8.4.7)

Similarly, for (Xi: „ - an)/b:, the limiting pdf is

(-log[1 - G*(x i )}} i-1

4(xi) -	
(i - 1)!	g* (xi).	 (8.4.8)

Later on, in (9.3.6), we see that g (j) given in (8.4.8) is in fact the pdf of the
(i - 1)th upper record value from the cdf G*. (See also Chapter 9, Exercise
23.) The pdf g(,), given in (8.4.7), is that of the (i - 1)th lower record value
from the cdf G.
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EXAMPLE 8.4.1 (Weibull distribution). In Example 8.3.2 we have seen
that when F is a Weibull (a) cdf, F E P(G 3 ) and F E P(GZ(x; a)). We
have also determined the norming constants a n , bn , a*, and bn . Using (8.4.5)
and (8.4.6), we obtain

g(1 ..... i>(x 1 ,..., x ; ) =exp — E 	 exp(—(exp(
— xi))) ,

r=1

-00 <x i < ••• <x i <00,

g(i ..... i>(x 1 ,..., x i ) = exp( -x") n ax" -1 ^	 0 <x 1 < ... <x; < oo.
r= 1

Further, the marginal pdfs of the limit distributions of (Xn -i +1:n — a,,)/b„
and (Xi: „ — a)/b, obtained, respectively, from (8.4.7) and (8.4.8), are

and

exp{ — exp( —x i )}
gci>(x i) = exp( —ix;)

(i — 1)!

* 	 ax;"- ! 

exp( —x")
g^ ;>( x ; ) = ax ; 	^

(i — 1 ) .

—00 < x ; < 00,

When a = 1, g ;̂  reduces to the pdf of a I'(i , 1) random variable. This agrees
with our conclusion in Section 8.2 that when F is Exp(1), the limit distribu-
tion of nX; : n is I'(i, 1). Also compare this with the conclusion drawn in
(9.3.1).

We will now turn our attention to the joint asymptotic behavior of the
upper and lower extremes. To keep the details simple, let us look at just the
sample maximum and the minimum. To avoid trivialities, assume that both
these random variables have nondegenerate limit distributions. We then have
the following result.

Theorem 8.4.3 (asymptotic independence of sample maximum and mini-
mum). If F E 0(G) and F E P1(G*), then (Xn :n — a,,)/b„ and (X i

an)/b,' are asymptotically independent random variables.

Proof. Since F e P1(G*) we know that {1 — F(a: + bn y)}" --> 1 —
G*(y) for all real y. If y < G* -1(1), 1 — G*(y) > 0, and for such y's,
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{1 - F(an + b: y)) --0 1 as n	 00. Hence, for large n and y < G* -1(1), we
can write

MX„ : „- an)/k 5 x,('Y1 :n - an)/bn > y)

= (F(an + bo x) - F(an + bn y)
yn

C	 n
= { 1 — Na:+ b,*y)} 1

n 	n 

n[1 - F(an + b: y)]
(8.4.9)

where cn , given by (8.4.1), converges to -log G(x) for all real x, as n --► co.
Since {1 - F(an + bn* y)} -0 1, it follows from Lemma 8.4.1 that the second
factor on the right-hand side of (8.4.9) tends to exp( -( - log G(x))) =-- G(x).
As noted earlier, the first factor on the right-hand side in (8.4.9) tends to
{1 - G*(y)). Hence, we conclude

P((Xn:n - an) /bn < x, (X1:n - an)/bn > y) -> G(x)(1 - G*(y))
(8.4.10)

as n --0 co for all real x and y < G* -1(1). For y Z G* -1(1) it is obvious that
(8.4.10) holds since the left-hand-side probability tends to 0. Thus, we have
shown that (8.4.10) holds for all real x and y. This establishes the asymptotic
independence of the two sample extremes. ❑

We apply Theorem 8.4.3 to find the asymptotic distribution of Wn , the
sample range, and 1' , the sample midrange, assuming f is symmetric. Then
if F e 0(G1 ), it is also in 0(G*). When, without loss of generality, we take
f to be symmetric around zero, we can choose an = -an and bn* = bn . Let
(Xn :n - an )/bn 4 W. Then, (X1:n + an )/bn W*, where W* _ - W and
W and W* are independent. So we can conclude that (Wn - Za n)/bn - W
- W* and Vn/bn 4 (W + W * )/2 as n -► co. Note that the cdf of W - W
is that of the twofold convolution of the cdf G.

As an example let us choose F to be standard normal; that is, F = 4), in
which case G = G3 and G* = G3. Then W + W* has standard logistic
distribution (see Exercise 12). But the pdf of W - W* does not have a closed
form. For approximations to its pdf see David (1981, pp. 268-269).

Even when F is asymmetric, Theorem 8.4.3 can be of use whenever
bn/b,* -0 1 as n -► cc. If bn /b: --0 0 or co, one of the extremes is the
dominant contributor to the asymptotic behavior of Wn or Vn . For example,
when F is an Exp(1)cdf, (Xn ;n - log n) has limiting cdf G3 and nXl:n has
cdf G 2(x; 1). Thus Xi ,, —> 0 and, hence, (Wn - log n) also has limiting
cdf G3.
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8.5. CENTRAL AND INTERMEDIATE ORDER STATISTICS

For 0 < p < 1, let i = [np] + 1, where [np] represents the integer part of np.
Then, Xi:n represents the pth sample quantile and is a central order statistic.
When F is absolutely continuous with finite positive pdf at F - I (p), X, : ,, is
asymptotically normal after suitable normalization. This basic result, which
was introduced informally in Chapter 1, will be formally proved below.

Theorem 8.5.1 (asymptotic distribution of a central order statistic). For
0 < p < 1, let F be absolutely continuous with pdf f which is positive at
F -1(p) and is continuous at that point. For i = [np] + 1, as n --0 cc,

^n f(F-I(p))
 (Xi:n — F -I (p)) d,

 N(0, 1)
Vp( 1 — p)

(8.5.1)

Proof. As outlined in Chapter 1 itself, we first show that (8.5.1) holds
when F is a Uniform (0, 1) cdf. Then we use the inverse probability integral
transform X, : n  F - I (Ui : n ) to prove it for a general F satisfying the condi-
tions stated in the theorem.

To show that

►^ (Ui :n — p) d' N(O,p( 1 —p)),	 (8.5.2)

as n and hence i approaches infinity, first we recall that U : n is a
Beta(i, n — i + 1) random variable. Thus, it can be expressed as

A n

Ui:n = A + B 'n	 n
(8.5.3)

with A n = E;_ I Z, and Bn = E;+,+ 1 4, where Zr 's are i.i.d. Exp(1) random
variables. Since E(Zr) = 1 and var(Zr ) = 1, from the central limit theorem it
follows that {(A n — i)/ f } —4 N(0,1). Consequently, on recalling i = [npj +
1, we obtain ((A n — i)/ V) go A, where A is N(0, p). Similarly, we can
conclude that {(B,, — (n — i + 1))/ VW} 4 B, where B is N(0,1 — p). Since
A n and B,, are independent for all n, the limit random variables, A and B,
are also independent. This means

1
Cn = ✓— { (1 — p)(A,, — i) — p(Bn — (n — i + 1)))

converges in distribution to a N(0, p(1 — p)) random variable. Now, using
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(8.5.3), we can write

 C„ - {(i - np - 1)/I }
16-1(U:n-P)	

{(A„+Bn) /n}
(8.5.4)

The numerator on the right-hand side in (8.5.4) converges in distribution to a
N(0, p(1 - p)) random variable. By the weak law of large numbers, the
denominator converges to 1 in probability. Hence, by Slutsky's theorem,
(8.5.2) holds.

For an arbitrary cdf F, we use Taylor-series expansion for Xi: „ as done in
Section 5.5, and the relation in (5.5.6), to write

Xi:n (1- F- 1 (P) + (U:n — P){f(F -1 (Dn)) } - 1 '

where the random variable D„ is between U,,„ and p. This can be rearranged
as

VW {Xi:n - F -1 ( P))  *" (Ui:n - P){f(F -1 (D„))} 1 . (8.5.5)

When f is continuous at F -1( p), it follows that as n -9 co, f(F- '(D„)) -
f(F- '(p)). We use (8.5.2) and Slutsky's theorem in (8.5.5) to conclude the
proof of the asymptotic normality of X [ ] + 1 : 

„ as given in (8.5.1).	 ❑

In our proof, we assumed that f is continuous at F -1(p) to show that (8.5.1)
holds. But the result is true even without that assumption. Further, note that
it requires F to be differentiable and have positive pdf only at F- '(p); the
cdf can have discontinuities at other points in its support. From (8.5.4), it
follows that the asymptotic distribution of !(U — p) remains the same as
long as {(i/n) - p} -► 0 as n -0 co.

Theorem 8.5.1 implies that the sample quantile Xi: „ is a consistent
estimator of F -1( p). Further, (8.5.1) can be used to obtain an approximate
confidence interval for F-1( p) if either the form of f is completely specified
around F-1( p) or a good estimator of f(F- '(p)) is available. We also know
from Section 5.5 that A i  F-1(p) and of?„ = p(1 - p)/{n[ f(F'(p))] 2)
by the David-Johnson approximations. So Xi: „ is an asymptotically unbiased,
consistent, and asymptotically normal estimator of F -1(p). Now let us see

Xhow X„, the sample median, compares with „, the sample mean, as an
estimator of the population mean.

EXAMPLE 8.5.1. Suppose that 1.1. and the population median (= F -1(0)
coincide. Let us assume the variance o. 2 is finite and f(µ) is finite and
positive. For simplicity, let us take the sample size n to be odd. While X„ is
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an unbiased, asymptotically normal estimator of µ with var(Xn ) = o 2/n, Xn

is asymptotically unbiased and normal. If the population pdf is symmetric
(around µ), in is also unbiased. Further, var(Xn) = {4n[ f(µ)] 2} -1 . Thus, as
an estimator of µ, the sample median would be more efficient than the
sample mean, at least asymptotically, whenever [2f(µ)] -I < a. This condi-
tion is satisfied, for example, for the Laplace distribution with pdf f(x; µ)
= i exp(-Ix - µ I), -00 < x < 00. For this distribution, we know that Xn is
the maximum-likelihood estimator of µ (Chapter 7, Exercise 18), and that it
is robust against outliers. Further, since f(µ) = Z, we can construct confi-
dence intervals for µ using the fact that v/! (X - µ) is asymptotically
standard normal!

EXAMPLE 8.5.2 (Weibull distribution). For the Weibull (a) cdf, f(x) =
axe -1 exp( -xn) and F-1(u) = {-log(1 - u)}ß, where ß = 1/a. Hence,
from Theorem 8.5.1 we can conclude that

p{ -log(1 - p) }zcp -u

►r{Xi:n - ( - log( 1 - P)) R }	 N 0, 
a2(1 - p) 	1 

when i =[np] + 1, 0 < p <1. When a = 1, or when F is Exp(1), the above
simplifies to

,^	 P
"` {Xi:n + log(1 - p)} -°^ 1V (0 , 	 ).

1-p

In Section 8.2 we noted that when F is an exponential cdf, (X;:n -

N' i : n)/ai : n is asymptotically standard normal when i -+ 00 and n - i -► oo.
When i = [np] + 1, as the above example illustrates, Theorem 8.5.1 can be
used to make a nicer statement in the sense that it gives simple expressions
for the norming constants.

When the conditions of Theorem 8.5.1 do not hold, the asymptotic
distribution of X;   may not be normal. As noted earlier, if %' {(i/n) - p)

0, 0 < p < 1, Xi : n is asymptotically normal when F has positive pdf at
F-1(p). Smirnov (1949) has shown that if the conditions imposed on F do
not hold, the limit distribution can be one of three other types, two of which
are related to standard normal cdf. The remaining one is a discrete uniform
cdf with two-point support. When the rate of convergence of (i/n) to p is
slower, other distributions are possible. When i-300,0o, n - i -► 00 such that
i/n p, where 0 < p < 1, Balkema and de Haan (1978) show that one can
find parent cdfs F such that the limiting cdf of normalized X,.  n is any
desired cdf!

 



226
	

ASYMPTOTIC THEORY

Asymptotic Joint Normality of Central Order Statistics

So far we have discussed in detail the asymptotic normality of a single central
order statistic. This discussion extends in a natural manner to the asymptotic
joint normality of a fixed number of central order statistics. This is made
precise in the following result.

Theorem 8.5.2. Let ir = [np,] +1,15 r5 k, where 0 <p1< p2< •••
< pk < 1. Assume that for each r, f(F- 1(p,)) is finite and positive. Then the

joint distribution of V(Xi, : „ — F-1(p,)), 1 5 r < k, is asymptotically k-
variate normal with zero mean vector and covariance matrix V = (o,A ),
where o= pr( 1 — ps)/{f(F- 1(p,))f(F- 1 (ps))), 1 r 5 s 5 k.

Evidently, even asymptotically, two central order statistics are dependent.
This is in contrast with the asymptotic independence of lower and upper
extremes which we noted in Theorem 8.4.3. Further the asymptotic covari-
ance structure here is very close to that of uniform order statistics.

The joint normality can be used to construct simultaneous confidence
regions for two or more population quantiles. It is of great use in studying the
asymptotic properties of estimators of location or scale parameters which are
linear functions of a finite number of central order statistics. As discussed
toward the end of Section 7.5, the patterned structure Z A greatly simplifies
the computations needed to produce asymptotically BLUEs of the location
and scale parameters.

Let us now look at an interesting application of Theorem 8.5.2.

EXAMPLE 8.5.3 (two-parameter uniform distribution). Let F be
Uniform(µ — a, µ + v), 0 < p, < 0.5 and p2 = 1 — p 1 . Then, with i =
[np 1 ] + 1, j = [np2 ] = n — i + 1, the quasirange W,  = XJ:n — X, :n and
ith midrange V • : n = (Xj : n + Xi , „)/2 are jointly asymptotically normal.
Since F- 1(u) = µ — a + 2uv, and f(F- 1(u)) = (2v) - 1 , 0 < u < 1, the pa-
rameters of the limit distribution are easy to compute. On applying Theorem
8.5.2 we can conclude v(W, j:n — 2(1 — 2p 1 )cr) 4 N(0,8p 1(1 — 2p,)o 2 )
and Irri (V i — µ) -4 N(0, 2p 1 Q 2). Further, they are asymptotically inde-
pendent! One can use V, j:n as an estimator of and (W, j ,/ 2(1 — 2p 1 )) as
an estimator of a when we have the symmetrically doubly (Type II) censored
sample, X1 .,,,..., Xn _ i + 1: „. Compare them with the BLUES of the parame-
ters computed in Chapter 7, Exercise 26. (Note that our notations are slightly
different here.)

Asymptotic Normality of Intermediate Order Statistics

We conclude this section with a brief discussion of the asymptotic behavior of
intermediate order statistics. Let us call Xn _ ;+1 an intermediate upper
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order statistic if i -> co but i/n - -> 0 as n --0 co. The limit distribution of
Xn—i+1:n depends on the rate of growth of i, and it could be either normal or
nonnormal. We state an interesting result due to Falk (1989) which estab-
lishes the asymptotic normality of X-i + I:„. His article is a good source for
references on other limit results for intermediate order statistics.

Theorem 8.53. Let F be an absolutely continuous cdf satisfying one of
the von Mises conditions given in (8.3.9)-(8.3.11). Suppose i -► co and i/n
0 as n -4 oo. Then there exist norming constants a n and b„ > 0 such that
(Xn —i+I:n — 

a„)/b„ N(0, 1). One can choose an = F -1(1 - i/n) and b„
f /{nf(a„)). A similar result holds for Xi: „ when i	 co and i/n -> 0.

As we know, most of the standard absolutely continuous distributions
satisfy the von Mises conditions. One such distribution is the Weibull
distribution.

EXAMPLE 8.5.4 (Weibull distribution). We have already seen the asymp-
totic behavior of extreme and central order statistics from Weibull (a) cdf in
Examples 8.3.2 and 8.5.2, respectively. This cdf satisfies (8.3.11) and has
F-1(u) = {-log(1 - OP with ß = 1/a. On applying Theorem 8.5.3, it
follows that, with a„ = (log(n/i)}ß and b„ = f{[log(n/i)} 13-1 )/a, (X,,_,, . n

- a„)/b„ is asymptotically standard normal, if i -> oo and i/n - 0, as
n co. This implies that when a = 1 or when F is Exp(1), {X,,_, +1 .,,

 Vi is asymptotically standard normal.

8.6. LINEAR FUNCTIONS OF ORDER STATISTICS

For several distributions, linear functions of order statistics provide good
estimators of location and scale parameters. In Section 7.5 we saw two
special members of this class when we derived the BLUEs of the location and
scale parameters. We also noted in Section 7.9 that among such functions
those which give zero or negligible weights to extreme order statistics have
another desirable property of being robust against outliers and some devia-
tions from the assumed form of F. We will now formally define linear
functions of order statistics, quite often known as L statistics.

Suppose a,, ,,'s form a (double) sequence of constants. The statistic

1'n	 E ainXi:n
i=1

(8.6.1)
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is called an L statistic. When used as an estimator, it is often referred to as
an L estimator. Except when a; , n = 0 for all i but one, the exact distribution
of Ln is difficult to obtain in general. An exception is when F is an Exp(0)
cdf. We know that, in that case, sample spacings do have a nice distribution.
The other exceptions include the case where a ;,,, is free of n. In that case Ln

is essentially the sample mean except for possibly a change of scale. Thus, the
study of the asymptotic behavior of Ln becomes all the more important.

A wide variety of limit distributions are possible for Ln . For example,
when a ;  is zero for all but one i, 1 5 i s n, Ln is a function of a single
order statistic. We have seen in previous sections the possible limit distribu-
tions for X; : n which depend on how i is related to n. We have also seen that
the limit distribution may not exist, at least for the extreme order statistics. If
Ln is a function of a finite number of extreme order statistics or of a finite
number of central order statistics, one can use their asymptotic joint distribu-
tions (Theorems 8.4.2 and 8.5.2, respectively) to obtain the limit distribution
of L. When it depends only on a fixed number of central order statistics, the
limit distribution is normal, under mild conditions on F.

Even when the a ; , n's are nonzero for many i's, Ln turns out to be
asymptotically normal when the weights are reasonably smooth. In order to
make this requirement more precise, let us suppose a ; n in (8.6.1) is of the
form J(i/(n + 1))/n, where J(u), 0 < u S 1, is the associated weight func-
tion. In other words, we assume now that Ln can be expressed as

L
	 n

	.1(
 n+1
	 X. (8.6.2)

The asymptotic normality of Ln has been established either by putting
conditions on the weights or the weight function, or by assuming F to be
close to an Exp(1) cdf. Serfling (1980, Section 8.2), and Shorack and Weiner
(1986, pp. 664) discuss the asymptotic normality of L,, under various regular-
ity conditions. We will present one result which assumes J to be sufficiently
smooth with very little restriction on F. It is a simplified version of a result
due to Stigler (1974) [see also Mason (1981)1. Its proof is beyond the scope of
this book.

First, let us define

µ(J, F) = f cc xJ(F(x)) dF(x)

= f 1.1(u)F-1 (u) du (8.6.3)
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and

a 2 (J, F) = 211 	J(F(x))J(F( y)){F(x)(1 - F( y)) dxdy
eo <x < y <m

= 2 f f
o<u,<u2 <I

J(uI)J(u2)uI(1 — u 2 ) dF-'(ui) dF- '(u 2 ).

(8.6.4)

Theorem 8.6.1 (asymptotic properties of L„). Assume EIXI 3 is finite
where X represents the population random variable with cdf F. Let the
weight function J(u) be bounded and be continuous at every discontinuity
point of F- '(u). Further, suppose IJ(u) - J(v)I < Klu - v18+1/2 for some
constant K and S > 0, 0 < u < v < 1, except perhaps for a finite number of
values of u and v. Then, the following results hold:

(1) lim	 (E(L„) - µ(J, F)) = 0,
n co

(ii) lim n var(L„) = a 2(J, F),
n +oo

(iii) VT1(4, - IA.(J, F)) -, N(0, a 2(J , F)) ,

where L„, µ(J, F), and a 2(J, F) are given by (8.6.2)-(8.6.4), respectively.

The smoothness condition imposed on J above is known as a Lipschitz
condition. We now apply this theorem to obtain the limit distributions of
some L statistics.

EXAMPLE 8.6.1 (sample mean). When J(u) = 1, 0 < u < 1, L„ = X„,
µ(J, F) = µ , and a 2(J, F) = a 2 . Since J(u) is a constant, all conditions
imposed on J in Theorem 8.6.1 are satisfied. If EIX I 3 is finite, we can
conclude that Xn is asymptotically normal. This is the central limit theorem
for the sample mean. However, we know that the sample mean is asymptoti-
cally normal even if the third moment of the cdf F does not exist. Further,
note that we have E(L„) = µ(J, F) in this example.

EXAMPLE 8.6.2 (Gini's mean difference). When X 1 and X2 are i.i.d. with
cdf F, EIX1 - X2 1 provides a measure of dispersion which we will denote by
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0. Clearly, an unbiased estimator of 0 is Gini's mean difference, given by

n

G = 	 E E lx. -x; I.
"	 n(n - 1) 1=1 1=I 

, (8.6.5)

This may not appear to be an L statistic at the first glimpse, but it can be
expressed as

(n + 1) " ( 2i

G" — n(n - 1) ^ Z
I
 n + 1

(8.6.6)

In other words (n - 1)G"/(n + 1) is an L statistic whose weight function,
J(u) = 2(2u - 1). This weight function is bounded and continuous. Hence, if
EIXI 3 < co, from Theorem 8.6.1, we can conclude that Vr! (G" - 0) 4
N(0, a 2(1, F)), where a 2(1, F) is computed from (8.6.4).

When the Xi's are N(µ, a 2) random variables, it turns out that 0 =

EI X, - X2 1 = 2a/ Irrr. • Thus, /G"/2 is an unbiased L estimator of o, the
standard deviation of a normal population. It is known to be highly efficient
and is reasonably robust against outliers. Chernoff, Gastwirth, and Johns
(1967) show that in the normal case, L" with 1(u) = 1 - '(u) provides an
asymptotically efficient estimator of a. They also show that for the logistic
distribution, the L statistic whose weight function is J(u) = 6u(1 - u) pro-
vides an asymptotically efficient estimator of the location parameter.

EXAMPLE 8.6.3 (discard-deviation). Let 0 < p < i and

- ( 1 /p) , 0-< u <p,
J(u)= 0,	 p s u 5 1-p,

(1/p),	 1 - p <u51.
(8.6.7)

The L" corresponding to J(u) in (8.6.7) is the difference between the
averages of top k and bottom k order statistics where k = [np]. Daniell
(1920) considered the asymptotic mean and variance of such a statistic for
p = 0.25, and he called it discard-deviation. Hogg (1974) has suggested the
ratio of such L"'s with different p's as a measure of tail thickness of F. One
can apply Theorem 8.6.1 to obtain the parameters of the limit distribution of
L" whenever F- '(u) is continuous at p and 1 - p.
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Asymptotic Distribution of the Trimmed Mean

An important L statistic is the trimmed mean where either upper or lower or
both extremes are deleted. Its weight function can be expressed as J(u) =
(p2 - p1) - ', 0 < p1 < u < p 2 < 1, and J(u) = 0, otherwise. If F -1(u) is
continuous at pl and p 2 , one can apply Theorem 8.6.1. Stigler (1973b) has
obtained a more general result exclusively for the trimmed mean. We state
his result below; but first, let us begin with some notation.

For 0 < pl < p 2 < 1, the L statistic given by

is called a trimmed mean, where the proportions p 1 and 1 - p 2 represent the
proportion of the sample trimmed at either ends. Let

a = F-1(pi) - F I (P1 -) and ß = F(p 2 ) - F- '( p 2 -)

represent the magnitudes of jump of F ' at the trimming proportions.
Introduce a cdf H obtained by truncating F as follows:

1
0,

H( x) = {F( x) — P1)/( P 2 — p1),

1,

x < F -I ( p l ),

F - '( p 1 ) < x < F- '(p2-), (8.6.9)

x > F
-' (Pz )•

Finally, let µH and Cri2i denote the mean and the variance of the cdf H,
respectively.

Theorem 8.6.2. Let 0 < p 1 < p2 < 1 and n -+ 00. Then %/I (Sn - ! H ) I)
W where the limit random variable can be expressed as

1	 j
w- 	 {Y+ ^ F-'(pl) - µHll'1 + {F- '(P2) - µHJ Y2 - a max(0,1'1)

P2 - Pi

+ß max(0, Y2 )). (8.6.10)

In this expression, the random variable Y is N(0, (p 2 - ',dull),  the random
vector (Y1 , Y2) is bivariate normal with E(Y) = 0, var(Y) = pigi, where
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q; =1—  p,, i = 1, 2, and cov(Y1 , Y2) = —p 1 g2 , and, further, Y and (Y1 , Y2 )
are mutually independent.

Let us now examine the implications of Theorem 8.6.2. Whenever 0 <
p 1 < p2 < 1, µH and 4 are always finite; thus, the result is applicable in
that case even when F does not have finite moments. To apply the theorem,
we have to assume E{min(X, 0)) 2 is finite if p 1 = 0 and if p 2 = 1, we have to
assume the existence of E{max(X, 0)) 2 . Further, when p 1 = 0, a = 0, and Y1

is degenerate at 0 and when p 2 = 1, ß = 0, and Y2 is degenerate at 0. In any
case, we do not have to assume EIXI 3 is finite, a condition necessary to apply
Theorem 8.6.1.

The representation (8.6.10) for the limit random variable W shows that
1/W(S„ — µH) is asymptotically normal iff a = 0 and ß = 0. That is, the
weight function 1(u) and the quantile function F -1(u) do not have any
common discontinuity points. Hence, Theorem 8.6.2 provides a necessary and
sufficient condition for the asymptotic normality of the trimmed mean. Stigler
(1973b) discusses how inference procedures based on S„ are affected when
its asymptotic distribution fails to be normal.

We conclude this section as well as this chapter with two examples of
special trimmed means.

EXAMPLE 8.6.4 (symmetric trimmed mean). Let p 1 = p < i and p2 =

1 — p = q. Then, S„ is known as p-trimmed mean. We have already encoun-
tered Si, in Section 7.9 [recall (7.9.2)], where it was suggested as a robust
estimator. As noted there, its distribution is less affected by the presence of a
few outliers. Let us assume f is symmetric around   and that F -1(u) is
continuous at u = p (and hence at u = q). Then, in Theorem 8.6.2 we have
µH = µ and aH = {(ir.'&4 2 dF(x)]/(1 — 2p)) — µ2. Thus, ✓n (S — µ)
W, where W is N(0, 4). Further, o- , = [a,(1 — 2p) + 2p(F-1(p) —
µ)2 ]/(1 — 2p)2 .

When F is a Uniform(0, 1) cdf, F -1(u) = u, µ = Z, and H is
Uniform(p, q). Thus, aH simplifies to (1 — 2p) 2/12. Hence, for the standard
uniform parent, 1(S — 2) 4 N(0, (1 + 4p)/12), as n --0 co.

EXAMPLE 8.6.5 (selection differential). Geneticists and breeders measure
the effectiveness of a selection program by comparing the average of the
selected group with the population average. This difference, expressed in
standard deviation units, is known as the selection differential. Usually, the
selected group consists of top or bottom order statistics. Without loss of
generality let us assume the top k order statistics are selected. Then the
selection differential is

1 n 	1
Dk.n(11,a) = 

Q ^(
  E Xi:n i k —	 (8.6.11)
i n k+ I
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where and a are the population mean and standard deviation, respectively.
Breeders quite often use E(Dk n(µ, a)) or Dk , n(p., a) as a measure of
improvement due to selection. If k = n - [np], then except for a change of
location and scale, Dk , n(µ, a) is a trimmed mean with p 1 = p and p 2 = 1.
Further, the cdf H of (8.6.9) is obtained by truncating F from below at
F -1(p).

We can apply Theorem 8.6.2 to conclude that VW(Dk,n(µ, a) - All) 1'
(1 — p) - '{Y + (F- '(p) - µ. )Y1 - a max(0, Y1 )), where Y is N(0, qay) and
Y1 is N(0, pq), and, further, Y and Y1 are independent. When F- '(u) is
continuous at p, a (= F -1(p) - F - '(p - )) is zero and, consequently,
tin (Dk,n(µ, a) - !.LH) N(0, q-'{a, + p(F- '(p) - µ. ))). In other words,
as k -+ 00,

a(Dk,n(u, a ) uH) 4 N(0, ay + p{F- 1 ( P) AH }). (8.6.12)

The selection differential has been used as a test statistic to test for
outliers, and it has several desirable properties. Barnett and Lewis (1984)
present simulated percentage points of Dk ,n(IL, a) for several n assuming F
is standard normal.

When p, is unknown, Xn replaces it in (8.6.11) to yield the sample
selection differential

n

Dk n(X_n,a)	
Cr 

( 
i =n -k+1

Xf:n) — Xn •

This is a linear function of order statistics even though it is not a trimmed
mean. For this L statistic, the weight function is given by

J(u) 
_	 1/a, 0 < u < p,

P/aq, p < u < 1.
(8.6.13)

If F-1(u) is continuous at p, Dk n(Xf , a) is asymptotically normal. The
norming constants can be obtained from Theorem 8.6.1. Let H (H*) be the
cdf obtained by truncating F from below (above) at F - '(p). Then, using J
given by (8.6.13) in (8.6.3) and (8.6.4), we obtain µ(J, F) = (p H - µ)/a and

a z(J, F) - 
P PaH + qaH* + (PI-1,11qµ

qaz 	, (8.6.14)
+ H* - F-'(P)}

z 
1 
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respectively. Then, we can conclude that, as k —> CO,

%(Dk,„(X„, v) — o - '(µH — µ)) -L' N(0, 9o 2(J, F)), (8.6.15)

where o 2(4 F) is given by (8.6.14). The moments of F, and those of the
truncated cdfs H and H*, are related. The relationships are

= 9µH + pµ H*	 (8.6.16)

and

0 2 = 9{oN + (µH — 1 4 ) 2} + p{oN: + (µH . — 0 2) . 	(8.6.17)

The asymptotic variance of t/Dk . „(µ, o), given in (8.6.12), need not be
less than that of ^Dk,„(X„, a), given in (8.6.15). See Exercise 27 for an
illustration.

If a is unknown, S, the sample standard deviation, is used in its place,
which yields Dk . „(X„, S). But this statistic is no longer an L statistic.
However, as noted in Chapter 4, Exercise 17, if we are _sampling from a
normal population, the moments of Dk, „(X„, o) and Dk ,„(X„, S) are related.
You may also recall that in Section 7.9 we have used D I (X„ , S) for testing
for a single (upper) outlier in a normal sample. For k > 1, Murphy (1951)
proposed Dk . „(X„, S) as a test statistic for testing for k upper outliers.

Further information about these selection differentials and the relevant
references may be found in Nagaraja (1988b).

EXERCISES

1. (a) Check that Liapunov's conditions hold while applying the central
limit theorem for the X;: „ in (8.2.1) as i --0 00 and (n — i) —► 00.

(b) Determine µ;: „ and o;?„ in (a), and find compact asymptotic approx-
imations for them.

2. (a) Paralleling the definition of max-stable cdf given in (8.3.2), define a
min-stable cdf. (See Section 6.4.)

(b) Show that G;, G2, and G3 are all min-stable cdfs. As asserted in
Section 6.4 these are the only distributions in the class of nondegen-
erate min-stable cdfs.
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3. For each of the following cdfs/pdfs determine whether (i) X n : n and (ii)
X1: n can be normalized so that the limiting distribution is nondegener-
ate. If they can, determine the appropriate norming constants.

(a) F(x) = x ° , 0 < x < 1, 0 > 0 (Power-function distribution).

(b) F(x) = 1/(1 + e "x), — co <x < oo (Logistic).

1	 1
(c) f(x) _ r • 1 + x2' °° < x < oo (Cauchy).

e -<x/elx a - I

(d) f(x) _ 	 , x >— 0•
'

 a, 0 > 0 (Gamma(a, 0 )).
0"r(a) 

(e) F(x) = 1 — expi — (x/0) 2], x >_ 0, 0 > 0 (Rayleigh).

(f) F(x) =1 — exp( —x/(1 — x)), 0 <_ x <_ 1.

(g) F(x) = 1 + exp(1 /x), x < 0.

(h) F(x) = G 1(x).

(i) F(x) = G 2(x).

(j) F(x) = G3(x).

4. When F is a Poisson cdf, show that neither Xn : n nor X1: n can be
normalized to yield a nondegenerate limit distribution (the relation
between Poisson tail probability and Gamma cdf may turn out to be
handy here!).

5. When n -0 co, but i is held fixed, how are the asymptotic distributions of
XI :n and X;:n related? Express the limiting cdf and pdf of X . : ,, in terms
of those of XI : n.

6. Let (Xn -j + i : n — an)/bn -' W , j = 1, ... , k. Obtain explicit expressions
for the joint pdf of (W1 , ... , Wk ) when G = G ; , i = 1, 2, 3.

7. Let Z 1 , ... , Zk be i.i.d. Exp(1) random variables. Show that for the W's
defined in Exercise 6, the following representation holds:

(W1,. .., wk) 
d 

ln(Zl)rn(Zl +Z2),...,n(ZI + ... +Zk)),
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where

n(x) = G -1 (exp( -x)) =

x -1 /".

-x'i°,
-log x,

if G = G 1 ,

if G = G2,

if G = G3, 0 < x < co.

8. (a) Using the representation for the W's given in Exercise 7, or other-
wise, show that when G = G3 , W1 — W2, W  — W3, , Wk-1 - Il'k
and Wk are independent random variables.

(b) Determine the distributions of these spacings.
(c) Using (a) and (b) above, or otherwise, find the mean and variance of

Wk when G = G3. These are the moments of (k - 1)th lower record
value from G3.

9. Let X1 , X2, ... be an infinite sequence of i.i.d. random variables with
common cdf F. Let u 1 , u 2 , ... be a sequence of nondecreasing real
numbers. We say that an exceedance of the level u„ occurs at time i if
X; > u„. Let A„ denote the number of exceedances of level u„ by
X1 , ... , X„.
(a) Determine the distribution of A.
(b) Suppose the u„'s are chosen such that n{1 - F(u„)) -> A for some

positive number A, as n -> 03. Show that A n converges in distribution
and determine its limit distribution.

(c) Verify that the event {Xn -k +I:n < un) is the same as the event
{A„ < k). Hence determine the limiting value of P(Xn-k+1: n < un),
where k is held fixed and n -4 co, if n(1 - F(un )) -► A.

(d) Compare your answer in (c) to the limiting distribution of the
appropriately normalized Xn -k+1:,, we obtained in Theorem 8.4.1.

(Leadbetter, Lindgren, and Rootzen, 1983, Chapter 2)

10. Let A 1 and A2 be two independent random variables where A 1 has cdf
G2(x; 1) and A2 has cdf GI (x; 1). Define B 1 = A l - A2 and B2 = A l +
A 2 .
(a) Determine the marginal pdfs of B 1 and B2.

(b) Are B 1 and B2 independent?
(c) Use (a) to obtain the limiting distribution of appropriately normal-

ized sample range of a random sample from a Uniform(0, 1) popula-
tion. Determine the associated norming constants.

11. In Example 7.4.2 we noted that for the Uniform(0, 0 + 1) distribu-
tion, the MLE of 0 based on a random sample is of the form 8 =
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c(Yn : n — 1) + (1 — c)111: „, 0 < c < 1. Hence its asymptotic distribution
depends on the choice of c.
(a) Determine the asymptotic distribution of a for all c.
(b) From Exercise 7.12, we know that when c = 0.5, 8 becomes the

BLUE of 0. Use (a) to obtain the limit distribution of the BLUE.
What are the norming constants?

12. (a) Let A and B be two independent random variables where A has cdf
G3 and B has cdf G. Obtain the cdf of the random variable
X = A+B.

(b) What is the pdf of the limiting distribution of the sample midrange
from a standard normal population?

13. Let F have pdf f such that f(0 + x) = f(0 — x), for x > 0.

(a) Show that in , the sample median, is an unbiased estimator of 0 for
both odd and even sample sizes.

(b) Show that any L statistic with weight function J(u) is unbiased for 0
if J(u) = J(1 — u).

(c) When F is a Cauchy cdf with location parameter 0, use in to obtain
an unbiased estimator of 0 and find the asymptotic variance of your
estimator.

14. Obtain the asymptotic distribution of the interquartile range (X13n /41+ 1: n
— X[n/4)+1: n ) under suitable assumptions. State all your assumptions.

15. In Exercise 14, simplify your answer when F is a N(µ, (7 Z ) cdf. Use it to
produce an asymptotically unbiased estimator of o which is a weighted
interquartile range.

16. Specialize Exercise 14 to the case where (i) F is Exp(0), (ii) F is the
Pareto (0) cdf given in Example 8.3.3.

17. Let i --> co and i/n -* 0 as n —> co. Determine the asymptotic distribution
of Xn —i + 1 : n and of X; : n including the norming constants for the
following cdfs:
(a) F(x)=x ° , 0<x<1, 0 >0.
(b) F(x) = 1/(1 + e -X), —co < x < co.
(c) F(x) = 1 — exp( —(x/0) 2), x >_ 0, 0 > 0.
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18. Let X be an absolutely continuous random variable with cdf F and
having variance Q 2. Show that

0.2_ ff	 F(x) {1 —F(y)}dXdy.
m<X<y<m

(Hint: Try integration by parts.)

19. Show that the two expressions for Gini's mean difference (G„) given by
(8.6.5) and (8.6.6) are the same.

20. (a) Determine E I X I and E(max(0, X)), when X is N(0, a 2 ).

(b) Show that cG,,/2 is an unbiased estimator of a assuming that we
are sampling from a normal population.

(c) Find E(W) where W is the random variable corresponding to the
limit distribution of the trimmed mean taken from a normal random
sample. [Recall (8.6.10).]

21. (a) When F is a standard uniform cdf, determine µ(J, F) and a 2(J, F)
for the weight function 1(u) = 2(2u — 1).

(b) Now suppose F is Uniform(0, 0). Obtain an unbiased estimator of 0
based on G. Determine the parameters of the limit distribution of
your estimator.

22. Assume F is Uniform(0, 1) and

.1. ( u) = { 1/( ß — a), 0<a<u<ß<1

0,	 otherwise.

(a) Determine µ(J, F) and a- 2(J, F) using the expressions (8.6.3) and
(8.6.4).

(b) Since the L statistic corresponding to this J(u) is linearly related to a
trimmed mean, one can use Theorem 8.6.2 to determine µ(J, F) and
v 2(1, F). Verify that the two answers match.

23. In Theorem 8.6.2 obtain var(W) when F - l(u) is continuous at p i and p2 ,
0 <p i <p2 < 1.

24. Let 1(u) be as given in (8.6.13) and F-1(u) be continuous at p, 0 < p < 1.
Show that

µ(J, F) = ( AH — µ)/ T
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and

2 (J^ F) = q0. 2 (PaH + qaH* + [ Pµ11 + gµ11* - F-'( P) ] z} ,

where q = 1 — p, and H and H* are the cdfs obtained by truncating F
from below and from above at F- '(p), respectively.
[Hint: Use Exercise 18 and integration by parts to evaluate cr 2 (J,  F).]

25. Assuming F, H, and H* are as in Exercise 24, verify (8.6.16) and
(8.6.17).

26. Let 1 be the standard normal cdf. Let the cdf H be obtained by
truncating F from below at - '(p), 0 < p < 1. Show that

(a) µH = cp(t - 1 (p))/(1 — p), where cp is the standard normal pdf.
(b) vH = (1) - '( P)µ H + 1 — µ H.
(c) Use Exercise 24 and parts (a) and (b) and obtain expressions for µ H *

and oh*.
(d) For p = 0.95 and p = 0.99, determine µ H , µH*, r, , and oh*.

27. (a) Simplify the expressions for the limiting variances of VDk. „(µ, cr)
and V Dk. „(i f , o) when F = 4).

(b) Compare the two expressions.
(c) Repeat (a) and (b) for the standard Laplace distribution whose pdf is

given by f(x) =	 —co < x < co.

28. (a) Simplify µ(J, F) and cr 2(J, F) when J(u) is given by (8.6.7) when the
pdf of F is symmetric around zero and F - '(u) is continuous at p.
Express these moments in terms of µ H and oh where H is obtained
by truncating F from below at F- '(p).

(b) Specialize the above expressions to the case (i) F = 1 and (ii) F is
the standard Laplace cdf.

 





CHAPTER 9

Record Values

9.1. THE HOTTEST JULY 4TH ON RECORD!

As the temperature crept upward on July 4, 1957 in Riverside, California,
many citizens monitored their radios to see whether, indeed, you could fry
eggs on the sidewalk and whether, indeed, there had never been a July 4th
like this in the weather department's records. It was a record. Never once in
the preceding 32 years for which data was available had the July 4th
temperature exceeded the 108° registered on that day in 1957. A record for
all times was the general feeling around town. But a little introspection
suggested that eventually the record would be broken again. How long would
it stand? What would be the new record, whenever it occurred? Questions
like these prompted Chandler (1952) to formulate an appropriate body of
theory dealing with record values in sequences of i.i.d. continuous random
variables. It is quite remarkable that the genesis of record value theory can
be pinpointed so exactly. Prior to 1952, even though people surely chattered
about weather records and probably made and lost bar bets on them, they
apparently neglected to develop a suitable stochastic model to study the
phenomenon. Perhaps more remarkably, Chandler launched the study of
record values but stayed aloof from further development of the area, save for
cameo appearances as a discussant of the articles of other researchers. The
21-year period following Chandler's introduction of the topic saw a broad
spectrum of researchers working in the record value vineyard. The major
harvest was in by 1973 at which time, Resnick (1973) and Shorrock (1973)
completed documentation of the asymptotic theory of records. Subsequently,
there have been interesting new viewpoints introduced, relating record values
with certain extreme processes. In addition, generalized record value se-
quences involving nonidentically distributed observations have received more
attention. Such models will be of interest in the case of improving popula-
tions and provide partial explanations for the overabundance of record-
breaking performances in athletic events. Our focus in the present chapter
will be on the standard record value process just as it was introduced by
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Chandler. The interested student may wish to refer to interesting and useful
references surveying developments in the record value field. Glick (1978)
using the intriguing title "Breaking records and breaking boards" provides a
survey of the first 25 years. Contributions from the subsequent decade are
discussed in Nagaraja (1988a). Incidentally, that 1957 temperature record still
stands, though it was tied in 1989.

9.2. DEFINITIONS AND PRELIMINARY RESULTS
ON RECORD STATISTICS

Let X1 , X2 , ... be a sequence of independent identically distributed random
variables with common distribution function F. We will assume that F is
continuous so that ties are not possible. There are a few results available on
record values corresponding to discrete distributions (see, e.g., Exercises
2-4), but the more elegant results are associated with the continuous case.

An observation X1 will be called a record (more precisely an upper record)
if it exceeds in value all preceding observations, i.e., if X; > X; , Vi <j.
Lower records are analogously defined. The sequence of record times (T„r= 0

is defined as follows.

To = 1,	 with probability 1,

and for n> 1,

T„ = min{ j: 1 > T„-t , Xj > XT.J.	 (9.2.1)

The corresponding record value sequence (R} 0 is defined by

R„ = XT. ,	 n = 0, 1, 2,....	 (9.2.2)

Interrecord times, o n , are defined by

= T„-Tn-1;	 n = 1,2 	 (9.2.3)

Finally, we introduce the record counting process {N„)n =1 , where

N„ = {number of records among X 1 , ... , X„} .	 (9.2.4)

Monotone transformations of the Xi 's will not affect the values of
and {N„}. It is only the sequence (Rn) that has a distribution which depends
on the specific common continuous distribution of the Xi's. For that reason it
is wise to select a convenient common distribution for the Xi's which will
make the distributional computations simple. Thus, if (R n), (T„), (0„), and
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{Nn) are the record statistics associated with a sequence of i.i.d. X1 's and if
Y = ¢(X) (where 4) is increasing) has associated record statistics (Rn}, (T,},
(S,,), and {NO , then T, = Tn , 0'n e ^, Nn = Nn , and Rn d (AR n ).

9.3. DISTRIBUTION OF THE nTH UPPER RECORD

The friendliest common distribution for the X1 's is the standard exponential
distribution. We will let {X,*) denote a sequence of i.i.d. Exp(1) random
variables. Exploiting the lack of memory property of the exponential distribu-
tion, it follows that the differences between successive upper records will
again be i.i.d. standard exponential variables, i.e., {R n* — R_ 1},7 =1 are i.i.d.
Exp(1) [again the asterisk reminds us that the result is specific for an i.i.d.
Exponential(1) sequence of observations]. From this it follows immediately
that

R*n	 1'(n + 1,1),	 n = 0,1,2,....	 (9.3.1)

From this we can obtain the distribution of R n corresponding to a sequence
of i.i.d. Xi 's with common continuous distribution function F. Note that if X
has cdf F, then —log[1 — F(X)] Exp(1), so that

X °= F - '(1 — e_x* ),	 (9.3.2)

where X* — Exp(1). Thus, X is a monotone increasing function of X* and,
consequently, the nth record of the (X n} sequence, Rn is related to the nth
record R*, of the exponential sequence by

Rn e F -1 (1 — e -R^).	 (9.3.3)

The following well-known expression for the survival function of I'(n + 1,1)
random variable

P(Rn > r*) = e
-r*
	 (r*)k/k!

k=0
(9.3.4)

allows an immediate derivation of the survival function of R„ as follows:

P(R,, > r) = P(F - '(1 — e -R^) > r)

= P(1 — e -R* > F(r))

= P(Rn > —log(1 — F(r)))

= [1 — F(r)]	 [—log(1 — F(r))] k/k!.	 (9.3.5)
k=0
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If the distribution F is absolutely continuous with density f, then we may
differentiate (9.3.5) and simplify the resulting expression to obtain

fRn(r) = f(r)[—log(1 — F(r))] n/n!.	 (9.3.6)

The joint density of the set of records Ro, R*, ... , R: corresponding to an
exponential sequence is easy to write down. From it, the joint density of
records R0, R 1 , ... , R. corresponding to any sequence of absolutely continu-
ous Xi 's can be obtained by coordinatewise use of the transformation (9.3.3).
The details are described in Exercise 23.

Expressions (9.3.5) and (9.3.6) describe the distribution of the size of the
nth record, when it occurs; they, of course, give no information about when
we can expect to encounter the nth record. Such questions require study of
the record times, interrecord times, etc., i.e., Tn , 3n , and Nn . Before turning
to a study of those variables, we may make a few comments on the approxi-
mate distribution of Rn (the nth record) when n is large. Referring to (9.3.3)
we see that

n

Rn =14E4
i=o

(9.3.7)

where r/'(u) = F -1(1 — e -") and Xi* 's are i.i.d. Exponential(1) random vari-
ables. Tata (1969) showed that a necessary and sufficient condition for the
existence of normalizing constants an and ßn > 0 so that (Rn — an)/ßn
converges in distribution to a nondegenerate limit law is that there exists a
nondecreasing function g(x) such that

lim 
*-1(ßnx

r
+ an) — n

 — g(x)
n ^ ao	 {//!

(93.8)

[where * is as defined following Eq. (9.3.7)], and in such a case the limiting
distribution is given by 4)(g(x)), where 4) is the standard normal cdf (see
Exercise 5). Later Resnick (1973) confirmed that there are only three forms
that g(x) can take, namely; (i) g 1(x) = x, —00 < x < 00, (ii) g2(x) = a log x,
x z 0, and (iii) g3(x) _ —a log( —x), x 5 0 (where a is a positive constant).
As is the case in the study of limiting distributions for maxima (Section 8.3),
it is sometimes a nontrivial task to determine the appropriate normalizing
sequences (an} and (ßn) even when we know the appropriate form of the
limiting distribution.

As an example consider the record value sequence when the common
distribution of the X,'s is Weibull; i.e., F(x) = 1 — e -;', x > 0, where y > 0.
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In this case

/-1(v) = -log[1 - F(v)] = v',

and, consequently, if we choose a n = n l /'' and ß„ _ (n + 1/71 ) 1 /7 - n ih
and compute the limit in (9.2.8), we find g(x) = x and conclude in this case
that R„ is asymptotically normal.

9.4. DISTRIBUTIONS OF OTHER RECORD STATISTICS

Now we turn to the distributions of the T„'s, .„'s, and N,,'s. To get a flavor of
the kinds of results obtainable and the nature of the arguments needed,
consider first the distribution of To the time of occurrence of the first
nontrivial record (recall To = 1, since the first observation trivially exceeds all
preceding observations). To get the distribution of T 1 , a simple argument is
as follows. For any n >- 1,

1
P(TI > n) = P( Xi is largest among X 1 , X2 ,..., X„ ) = -

n
,  (9.4.1)

since any of the n X1 's is equally likely to be the largest. Thus, the distribu-
tion of T i is given by

P(TI = n) =
1 

n = 2, 3, . . . .	 (9.4.2)
- 1)

Observe that the median of T i is 2, but the mean is 00. The last curiosity is
the basis of Feller's (1966) anecdote regarding the persistence of bad luck
(the waiting time until someone has to wait longer than you in the super-
market is infinite, so clearly you are singularly ill favored by the gods). This
observation must be interpreted in the correct perspective. It refers to the
unconditional mean for To Of course the conditional mean for T o given a
particular observed value of X I , is always finite (see Exercise 22).

What about the joint distribution of several of the T i 's? A variety of
conditional arguments can be used to resolve this issue [see, e.g., David and
Barton (1962, pp. 181-183)]. A particularly appealing approach involves the
introduction of record indicator random variables {I„}n .1 defined by

I I = 1,	 w.p. 1

and for n > 1,

	I„ = 1,	 if X„ >

	

= 0,	 otherwise. (9.4.3)
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It turns out (see Exercise 6) that the I„'s are independent random variables
with

1
P(I„=1)= —,

	 n = 1 ,2 ,... .	 (9.4.4)

The knowledge of the joint distribution of the I„'s allow us to immediately
write down expressions for the joint density of the record times. Thus, for
integers 1 < n 1 < n 2 < ••• < nk , we have

P(T1 = n 1 , T2 = n 2 , ... ,Tk = nk)
= P(12 = 0,...,1„ 4 _ 1 = 0,1„, = 1,1„,, 1 = 0,..., 1„k = 1)

1 2 3	 n1 — 2 1	 n 1 	1

2 3 4	 n1 — 1 n 1 n 1 + 1	 nk

	= [(n 1 — 1)(n 2 — 1),...,(nk — 1)n k ] 1 .	 (9.4.5)

In principle we could use (9.4.5) to obtain the marginal distribution of Tk,
for k > 1. The resulting expression involves Stirling numbers of the first kind
[see, e.g., Hamming (1973, pp. 160)]. To obtain this result, it is convenient to
study the distribution of the record counting process (N„) defined in (9.2.4).
Our record indicator variables (I„} are intimately related to (N„}. In fact

N„ _ E I.	 (9.4.6)
j=1

Recall that the 11's are independent not identically distributed Bernoulli
random variables. Immediately we may observe that

^ ^ 1
E( 1J)	E(N„) = E	 = ^ —

	j=1 	 j=1

= log n + y,

where y is Euler's constant. Analogously, 

(9.4.7)

^ ^ 1
var(N„) = E var(IJ) = E — 1

J = 1	 J=1
n 1	 n 1

Ĵ  1	 j=1)

1 )1 

77.2
= log n + y — 6 . 	 (9.4.8)
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The above expressions for the mean and variance of N,, justify the claim
that records are rare. In fact, using Cantetli's inequality (see Exercise 9) we
can see that, for example,

P(NI >- 20) < 0.036. (9.4.9)

The probability generating function of N,, (= E(s ^'^)) will be the product
of the n generating functions of the Bernoulli random variables I 1 , IZ , ... , In .
Consequently (Exercise 10), we conclude that

1 	l
P( Nn = k) = coefficient of s k in [ _- fi(s +i _  1) J . ( 9.4.10)

nl 1 =1

The representation (9.4.6) allows us to immediately make certain observa-
tions about the asymptotic behavior of N,,. We have a strong law of large
numbers:

lim Nn/log n = 1 a.s.
n-. ^

(9.4.11)

(the corresponding weak law is readily dealt with; see Exercise 11). In
addition, a central limit theorem holds:

Nn - logn d
-> N(0,1)	 (9.4.12)

(this is proved by verifying that the Liapunou condition is satisfied).
Now we return to the problem of determining the marginal distribution of

Tk. Note the following relations among record related events.

{Tk > n} _ {N < k}

and
{Tk = n} ={Nn = k, Nn _ I = k - 1 }

={In =1,Nn _ 1 =k-1 }.

However, since the In 's are independent random variables, it follows that the
events {In = 1} and {N„_ I = k - 1) are independent. In addition, from
(9.4.4) and (9.4.10), we know their corresponding probabilities. Consequently,
we conclude that

1
P(Tk = n) = n coefficient of s k -1 in 1

n -1 l
(s + i - 1)1

( n
1 	n
)! 	;=1

l og n

= S k-i /n!,	 (9.4.13)
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where the promised Stirling numbers of the first kind have made their
appearance.

Since Tk > T1 and E(T1 ) _ 00, it follows that E(Tk ) = 00, Vk Z 1. In fact
E(O k ) = 00, Vk z 1; even the interrecord times have infinite expectation. To
verify this observation consider

00

E(AkITk -i = j) = E 1P(Tk = I +	 = j)
/= 1

= E IP(I„ 1 = 0, I) + 2 = 0,..., I;+1-1 = 0 , Ij+1 = 1 )

1=1

1^ 1 j +1 j+2 j + 1 - 1 j+1

j j+ 1	 j +1-2 1

l j
	 _

1 =1 (j + 1)( j + 1 - 1) Vj.

So unconditionally, E(A k ) = 00.
As k increases, Tk grows rapidly. If instead we consider log Tk we

encounter better behavior. Renyi (1962) proved that

log Tk/k -t 1	 (9.4.14)

and

(log Tk - k) /{k- —
► N(0, 1).	 (9.4.15)

9.5. RECORD RANGE

Consider a sequence of i.i.d. random variables (X). 1 with common distri-
bution function F. Now define the corresponding range sequence

V„ = X„ : ,, — X 1 .,,,	 n = 1,2,....	 (9.5.1)

Let {&}. o denote the sequence of record values in the sequence {V„}. The

Rn's are the record ranges of the original sequence {X,}. A new record range
occurs whenever a new upper or lower record is observed in the Xn

sequence. Note that R 0 = V1 = 0. Generally speaking, the record range
sequence is not a Markov chain. There is a closely related two-dimensional
Markov chain, however. Let X,„ and X„ denote the current values of the
lower record and upper record, respectively, in the Xn sequence when the
mth record of any kind (upper or lower) is observed. Now {(X„„ X„,)}„,_o
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does clearly constitute a Markov chain and we have

= X" - X'm	 m (9.5.2)

Now [following Houchens (1984)1 a simple inductive argument allows one to
determine the joint distribution of (X,n , Xm) when the original X; 's are
Uniform(0, 1) random variables. Then, a change of variable leads eventually
to the following expression for the density of the mth record range, R m ,
when the common distribution of the Xi 's is F with corresponding density f:

2"
fidr) _ (m — 1)! f 

f(r + z) f(z)[ —Iog(1 — F(r + z) + F(z))] m ' dz.

(9.5.3)

In the simple case where the X,'s are Uniform(0, 1), (9.5.3) can be simplified
to yield

fR (r) = 
( ^1 

1) ^ [ log(1 — r)] m - I ,	 0 < r < 1.	 (9.5.4)

Since this is exactly the same distribution as the (m — 1)st upper record
corresponding to an i.i.d. sequence of random variables with common distri-
bution F(x) = 1 — (1 — x) 2 , further results on the distribution of R m can be
gleaned from the material in Section 9.3. Why the mth record range of a
uniform sample should have the same distribution as the (m — 1)st upper
record of a sequence of random variables each distributed as a minimum of
two independent uniform (0, 1) variates, remains an enigma.

9.6. BOUNDS ON MEAN RECORD VALUES

Suppose that Rn is the nth upper record corresponding to an i.i.d. sequence
{Xn) with common continuous distribution function F(x). Assuming that a
density f(x) exists (though this is not technically needed for our final result),
we can write, using (9.3.6),

E(Rn ) = f ^ rf(r)( —log[1 — F(r)]) n/n! dr,	 (9.6.1)_„

provided the integral exists. A change of variable u = F(r) allows us to
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rewrite this in terms of the quantile function F+'(u). Thus,

E(R„) = f01F_'(u)[ —log(1 — u)] „/n!du.	 (9.6.2)

We recall that EIX I I < co was a sufficient condition to guarantee EX„ : „I < co
for every n. However, it is not a sufficient condition for the existence of
E(R„). To ensure that E(R„) exists for nonnegative Xi's, it suffices that
E(X;(log X; )„) exists. A convenient general sufficient condition for the exis-
tence of E(R„) for every n is that E(I X;I °) < co for some p > 1 (see
Exercise 13). For our present purposes this is adequate, since we plan to
assume that our Xi 's have finite means and variances. In fact, without loss of
generality we will assume E(Xi) = 0 and var(X;) and (= E(X;2)) = 1.

Now, mimicking the development in Section 5.4, we write, using (9.6.2)
and f,IF- '(u) du = 0,

where

E(R„) = I1F-1(u)(g„(u) — A) du, (9.6.3)

g„(u) = [—log(1 — u)] „/n!.

Applying the Cauchy-Schwarz inequality and recalling that jog„(u) du = 1
and fo[F'(u)] 2 du = 1, we get

E(R„) S [5 — 2A + A2 ] 1/2 ,

	(9.6.4)

where

5„ = f 1g^ ( u) du

(9.6.5)

Now the right-hand side of (9.6.4) is smallest when A = 1, and so we
eventually conclude that

E(R„)S Y(nn )
-1 . (9.6.6)

Equality can be achieved in (9.6.6). Let Z; be such that P(Z; > z) =
exp(—z'i „), z > 0. Then choose a„ and b„ so that X; = a„ + b„Z; has mean
zero and variance 1. For such a translated Weibull sequence, equality obtains
in (9.6.6) (Exercise 14).
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More complicated improved bounds can be constructed if we impose
further conditions on the distribution of the X i 's (e.g., symmetry). See
Nagaraja (1978) for details.

9.7. RECORD VALUES IN DEPENDENT SEQUENCES

A natural extension of the classical record value scenario is to postulate that
the Xi 's, instead of being i.i.d., are identically distributed but not indepen-
dent. The first case of interest involves an exchangeable sequence (X„). By
the famous de Finetti theorem, such a sequence is a mixture of i.i.d.
sequences. Thus there exists a real random variable Z and a family of
distribution functions {Fz(x): z E RI such that, for each n,

FX, 	 XR(x l, ... , x„) = f  ( zXi) dFz (z).	 (9.7.1)

Now the common distribution of the X's is given by

Fx(x) = f Fz (x) dFz(z).	 (9.7.2)
_ m

The distribution of the nth record, R,,, can be computed by conditioning on
Z and using the results of Section 9.3. Thus, from (9.3.5) and (9.3.6),

P(R,, > r) = fc° .P(R„ > rIZ = z) dFz (z)

= f {[l - FF,(01 ^, [—log(1 — Fz(r ))^ k/k!
l j
 dFz(z)

 k=o	 J
(9.7.3)

and if densities fz(r) exist,

fR,(r) = f :fz(r)[ — log( 1 —FF(r))]„/n!dFz(z). 	 (9.7.4)

Conditioning on Z allows us to compute the expected value of the nth record
(assuming EIXI I P < co for some p > 1 to guarantee that the integrals con-
verge). Thus,

E(R„) = j °2 .101 Fz- 1 (u)[—log(1 — u)]
„
/n!dudFz(z)

= f IF -1 (u)1—log(1 — u)] „ /n! du, (9.7.5)

 



252
	

RECORD VALUES

where we have defined

F -1 (u) = JF»(u) dFz(z).	 (9.7.6)
_„

Note that (9.7.5) is of the same form as is the expected nth record for an i.i.d.
sequence. Note, however, that the function F- ' which appears in (9.7.5) is
not in general the same as FP, which would be the appropriate function if
the Xi's had been i.i.d. For example (see Exercise 19), the expected nth
record for a certain exchangeable Pareto sequence coincides with the ex-
pected nth record for an i.i.d. exponential sequence. The corresponding i.i.d.
Pareto sequence has much larger expected records. It is not known to what
extent this is a general result. The specific question at issue is whether, for a
given marginal distribution F, the i.i.d. sequence has the maximal expected
records among all exchangeable sequences.

Record values have been studied in two other scenarios involving depen-
dent identically distributed sequences. Biondini and Siddiqui (1975) studied
the case where {XX) is assumed to be a stationary Markov chain. Only
approximate results are obtained. The situation is not much more encourag-
ing in the other case, which involves maximally dependent sequences [in the
sense of Lai and Robbins (1978)]. For example, Arnold and Balakrishnan
(1989, pp. 148-149) show that, in the case of a canonical maximally depen-
dent sequence with common distribution function F, the expected first
record is given by

^

E(R,) _ E I k i F- '(ku) du,
k =1 (k +1)

(9.7.7)

which is larger than the corresponding expected first record corresponding to
an i.i.d. sequence with common distribution F (see Exercise 20). Expressions
for E(R„) for n > 1 corresponding to maximally dependent sequences are
not available. In all cases considered, record values for dependent sequences
are still mysterious.

9.8. RECORDS IN IMPROVING POPULATIONS

Motivation for the study of improving populations was provided by the
preponderance of new records encountered in athletic competitions such as
the Olympic games. For i.i.d. sequences records are rare. In the Olympics,
the records fall like flies. The simplest explanation involves an assump-
tion that the X, sequence involved consists of independent variables which
are stochastically ordered; i.e., X; 5 Xi+1 [which means P(X; s x) z
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P(Xi+I < x) for every xi. Yang (1975) proposed a model in which

P(X1 <x) _ [Fo(x)] A ',	 i = 1,2,... 	 (9.8.1)

for some distribution Fo(x) and some sequence A 1 < A2 < A 3 , .... In par-
ticular he focused on the case in which A, = 8 i. Yang considered the
interrecord time sequence A n in such a setting and showed that O n is
asymptotically geometric. The distribution of the record values corresponding
to the model (9.8.1) is nontrivial. We will illustrate by considering E(R 1 )
when the underlying distribution Fo(x) is uniform, surely the simplest possi-
ble case. First we evaluate P(R I > r) conditioning on X I . Thus, for 0 < r < 1,

P(R I > r) = P(X I > r) + 
f r

P(R I > r^X f = x)A I x A 1 -I dz

=P(X I > r)

+ f r E P(Xi > r)P(X2 <x,..., Xi -I < x)A I x'`1 I dar
o i = 2

co 	, — Ir

= 1 — r Al + E (1 - r a')f ^xAi A l xxL — I dx
o j=2

= 1 — r A l + E (1 - r'I+) 
 At

  r %°l J.l
i =2	 ^j=IAi

Consequently, we have

E(R 1 ) = I IP(R I > r) dr

A 1 	°°	 AI	 1	 1

A 1 + 1 + i^ ^j=^A j Ej=iA j + 1	 Ej=l Aj + 1
). (9.8.2)

This expression does reduce to 	 as it should when A i = 1, Vf [the i.i.d.
Uniform(0, 1) case]. Computation of the expectation of other records in this
setting is apparently difficult.

Other improving population models have been studied in the literature.
For example, Ballerini and Resnick (1985) consider models in which Xi =
Y + di , the Y's are i.i.d. and {d i) is an increasing sequence. Another
possibility permits the distribution of the Xi 's to change after each record has
occurred [see Pfeifer (1982)]. Not surprisingly, none of the improving popula-
tion models does a good job of modeling the Olympic games process. The
obvious nonstationary nature of the Olympic process with its attendant

i =2
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politics, boycotts, and the like undoubtedly precludes the development of a
simple model.

EXERCISES

Refer to Section 9.2 for definitions.

1. Verify that the record value sequence {R„}n_ o is a Markov chain and
identify the corresponding transition probabilities. Treat both discrete
and continuous cases.

2. If the Xi's are i.i.d. geometric random variables, then R 1 — Ro and R o

are independent. Verify this claim and determine whether this character-
izes the geometric distribution among distributions with the nonnegative
integers as support.

3. If the Xi 's are i.i.d. geometric random variables, then R 1 — Ro and Ro

are identically distributed. Discuss this claim and its potential for charac-
terizing the geometric distribution.

4. Suppose that the Xi's are nonnegative integer valued and that E(R 1 —
Ro IRa) = aR0 + b. What can be said about the common distribution of
the X1's?	

(Korwar, 1984)

5. Suppose that (9.3.8) holds where ip is as defined following (9.3.7). Verify
that lim n . ,, P[(R„ — a„)/ß„ S x1= (1)(g(x)).

6. Prove that the record indicator random variables {1„)Äa 1 , defined in
(9.4.3), are independent r.v.'s with P(I„ = 1) = 1/n, n = 1, 2, ... .

7. Show N1 , N2, ... is a Markov chain with nonstationary transition ma-
trices.

8. Show that T„}n _ 1 forms a stationary Markov chain with initial distribu-
tion given by

P(T1= !) = 1 /1(! -1),	 1 z 2
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and transition probabilities

P(T„ = k1T„_ 1 =j)=j/k(k— 1),	 k>j.

Hint: use the /i 's.

9. Verify that P(N Ioco z 20) < 0.036.

10. Explain why (9.4.10) is true.

11. Verify that N„/log n 4 1 as n -+ oo.

12. Verify that the density for the mth record range is as given as (9.5.3).

13. (a) Verify that, assuming the X i 's are nonnegative, E(R„) exists if and
only if E(X,(log X,)„) exists.

(b) Verify that if El X; I ° < co for some p > 1, then E(R„) exists for
every n.

(Nagaraja, 1978)

14. For a fixed value of n, determine the nature of the common distribution
of the X,'s for which equality obtains in (9.6.6).

15. Let R„ denote the nth lower record corresponding to X 1 , X2 , ... i.i.d.
Uniform(0, 1). Verify that R'„ _° r1;= 0Y where the Y's are i.i.d.
Uniform(0, 1). Use this to derive inductively the density of R',,.

16. Suppose X 1 , X2, ... are i.i.d. F with corresponding record value se-
quence (R„) 0. Verify the following expressions for E(R„):

(i) [Uniform(a, b), F(x) = (x — a)/b, a < x < b]

E(R„) = a + (b — a)[1 — 2 -
<
„

+i>]

(ii) [Weibull: F(x) = exp[ — (x/cr) Y ], x > 01

E(R„) = QI'(n + 1 + y - ')/I'(n + 1)

	

(iii)	 [Pareto: (x) - (x/cr) a , x > Q, a> 1]

E(R„) = Q(1 — a'I) - („+i)
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17. Verify that the sequence of expected record values E(R„), n = 0, 1, 2, .. .
corresponding to [X;) i.i.d. F determines the distribution F. [Note that
E(R„) = joF -1(u)[ -log(1 - u)]n/n! du. Make the change of variable
t = -log(1 - u).]

18. By keeping track of the kth largest X yet seen, one may define a kth
record value sequence [Grudzien and Szynal (1985)]. Most of the mate-
rial in this chapter can be extended to cover such sequences. The key
result is that the k th record value sequence corresponding to the
distribution F is identical in distribution to the (first) record value
sequence corresponding to the distribution 1 - (1 - F)k .

19. Assume that Z - I'(2,1) (i.e., ff(z ) = ze -z, z > 0) and that, given
Z = z, the X1 's are conditionally independent with P(X1 > xI Z = z) =
e -ZX. Verify that this exchangeable sequence has the same sequence of
expected record values as does an i.i.d. exponential sequence.

20. Verify that the expected first record for a canonical maximally dependent
sequence with common distribution F [given by (9.7.7)] is always larger
than the expected first record corresponding to an i.i.d. sequence with
common distribution F [given by (9.6.2) with n = 1].

21. If R„ has an IFR distribution, then so does R„ 4 . 1 (so if X 1 is IFR then
all record values are IFR).

(Kochar, 1990)

22. Determine E(T1 I X1 = x) in terms of the common distribution of the Xi's

(FX(x)).

23. First verify that the joint density of Rö, RI, ... , Rn corresponding to an
exponential sequence is given by

* *	 — -'^	 0 < r* < •• < r*fR^...., R^^ ro , rl , ...^r„* ) "e	 ^ 	 „
= 0,	 otherwise.

From this obtain the following general expression for the joint density of
records (R 0 , R 1 , ... , R„) (assuming F is differentiable):

„ f r.
r 1 , ..., rn ) = (1 — F(r„)) fl (1 F(r1))

—00 < ro <r 1 < ••• <rn <co.

Compare this with (8.4.6) which deals with extremes instead of records.
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24. The following data represents the amount of annual (Jan. 1—Dec. 31)
rainfall in inches recorded at Los Angeles Civic Center during the
100-year period from 1890 until 1989:

12.69, 12.84, 18.72, 21.96, 7.51, 12.55, 11.80, 14.28, 4.83, 8.69,
11.30, 11.96, 13.12, 14.77, 11.88, 19.19, 21.46, 15.30, 13.74, 23.92,
4.89, 17.85, 9.78, 17.17, 23.21, 16.67, 23.29, 8.45, 17.49, 8.82,

11.18, 19.85, 15.27, 6.25, 8.11, 8.94, 18.56, 18.63, 8.69, 8.32,
13.02, 18.93, 10.72, 18.76, 14.67, 14.49, 18.24, 17.97, 27.16, 12.06,
20.26, 31.28, 7.40, 22.57, 17.45, 12.78, 16.22, 4.13, 7.59, 10.63,

7.38, 14.33, 24.95, 4.08, 13.69, 11.89, 13.62, 13.24, 17.49, 6.23,
9.57, 5.83, 15.37, 12.31, 7.98, 26.81, 12.91, 23.65, 7.58, 26.32,

16.54, 9.26, 6.54, 17.45, 16.69, 10.70, 11.01, 14.97, 30.57, 17.00,
26.33, 10.92, 14.41, 34.04, 8.90, 8.92, 18.00, 9.11, 11.57, 4.56

(i) Obtain the observed values of the following sequences of record
statistics: (a) T,,, (b) A,,, (c) R,,, (d) T; , (e) d',,, (f) R.

(ii) Do you think the rainfall is showing a decreasing trend? Suggest a
test procedure based on a suitable record statistic.

25. Suppose (R„) is the record sequence corresponding to Xi 's with continu-
ous distribution function F. Suppose that {Rn) is the record sequence
corresponding to X,'s with distribution function G. Suppose E(R„) =

n = 1, 2, .... Prove that F = G.
(Kirmani and Beg, 1984)
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