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1. There is a decision to be made – for example, whether to
adopt a new technology, wear a new style of clothing, eat in a
new restaurant, or support a particular political position;

2. People make the decision sequentially, and each person can
observe the choices made by those who acted earlier;

3. Each person has some private information that helps guide
their decision;

4. A person can’t directly observe the private information that
other people know, but he or she can make inferences about
this private information from what they do.
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Anderson and Holt (1996)

I: Classroom Games: Information
Cascades



An urn that could be majority red or majority blue equally likely:

(a) The 1st student tells what what she sees. The guess conveys
perfect information;

(b) If the 2nd student sees the same color – guess the same. If
different – brakes the tie. The guess again conveys perfect
information;

(c) If the 3rd Student sees opposite guess, then he guess what he
sees. If the same then he saw three independent draws and
ignores his information;

(d) If the 4th student (and onward) sees three identical guesses in
a row and knows that the first 2 were true, while the 3rd is not
informative, then she ignores her private information;

• Notes on: full rationality, potential non-optimality, fragility.
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• Chances maximizing rule: Pr[mb|s&h] > 1
2

• Priors: Pr[mb] =Pr[mr] =1
2

• Conditionals: Pr[b|mb] =Pr[r|mr] =2
3

• The 1st student:

Pr[mb|b] = Pr[mb]·Pr[b|mb]
Pr[b]

= Pr[mb]·Pr[b|mb]
Pr[mb]·Pr[b|mb]+Pr[mr]·Pr[b|mr] =

2
3

• The 2nd student: ...

• The 3rd student:

Pr[mb|b, b, r] = Pr[mb]·Pr[b,b,r|mb]
Pr[b,b,r]

= Pr[mb]·Pr[b,b,r|mb]
Pr[mb]·Pr[b,b,r|mb]+Pr[mr]·Pr[b,b,r|mr] =

2
3

Proof of general case
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• Learning does not have to be Bayesian in the first place, but if
it is:

B(h∗|e1, e2, ...) =
π(e1, e2, ...|h∗)π(h∗)∑
h∈H π(e1, e2, ...|h)π(h)

it does not have to be perfect;
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Eyster and Rabin (2010)

I: Naive Inference



• Best response trailing naive inference (BRTNI);

• Builds off of a weaker form of concept of “cursed equilibrium”;

• Inferentially naive players infer “too much”:
• Inferential naivety push toward overweighting prior signals, its essential

property, which drives the central results, is that herders end up placing
far too much weight on early relative to late signals.

• The relative weight placed on different predecessors’ signals vs. relative
weight each person places on her own versus others’ signals.
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Eyster and Rabin (2010)

II: Rational and Naive Learning in a Rich
Setting



• Rational herders either converge to only weak public beliefs or only very
infrequently herd on the wrong action;

• Consider:
• ω ∈ {0, 1};
• Pr[ω = 1] = π;
• It information (private and public) of t;
• Qt ≡ E [ω|It ] = Pr[ω = 1|It ];

• (P1) bounds t’s posterior belief Qt ≥ q when ω = 0:

Pr[Qt ≥ q|ω = 0] ≤ π

1− π
1− q

q
(P1)

• The maximum probability that t can hold information causing him to
believe that ω = 1 with at least probability q, when, in fact, ω = 0;

• The bound holds in any binary-state Bayesian learning environment.

Proof of P1
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• In richer environment confident-yet-mistaken herd is even more limited;
• Consider:

• A =
{
0, 1/n,

2/n, ...,
(n − 1)/n, 1

}
, n + 1 set of actions

• Assume gt(a;ω) = −(at − ω)2, with argmax at = E [ω|It ]
• S is a denumerable set of signals;
• r ≡ infs∈S{Pr[ω = 1|s]};
• All predecessors’ are observed and actions converge.

• Then with π = 1/2 the following holds:

Pr[ lim
x→∞

at = 1|ω = 0] ≤ r

1− r

1
2n − 1

(C2)

• With n = 1 cascade start only of public beliefs must exceed 1− r ;
• Negate to see;

• Then with (P1) a chance of mistaken herd cannot exceed r/(1−r):
• If r = 0.05 meaning only that once in a (very long) while some player receives a

private signal strong enough to be 95 percent certain of the state being ω = 0,
then players can wrongly herd on ω = 1 no more than ' 5% of the time.

• Finer action spaces reduce mistaken herding.

Proof of C2
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To differentiate naive and rational learning consider the model:

• ω ∈ {0, 1}, ex ante equally likely ;
• t in a countable infinite sequence receives st ∈ [0, 1] which are i.i.d

conditional on the state;
• Signal have continuous densities f0 and f1;
• Before taking action in [0, 1], t observes signal and all previous actions;
• For simplicity: for each s ∈ [0, 1], f0(s) = f1(1− s) and L(s) ≡ f1(s)/f0(s)

with image R+ and L′(s) > 0;
• Simplifications allow to normalize s = Pr[ω = 1|s];
• Let at(at , ..., at−1; st) be an action of t. Rich action space ensures that

each player’s action fully reveals her beliefs;
• Let E [ω|It ] = Pr[ω = 1|It ] a probabilistic belief of t with It that ω = 1;
• Assume gt(a;ω) = −(at − ω)2, with argmax at = E [ω|It ];
• t takes at = 0 if E [ω|It ] = 0 and at = 1 if E [ω|It ] = 1;

cf. simple model
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The analyzes of a rational player:

• P1 chooses ln(a1/(1− a1)) = ln(s1/(1− s1))

• P2 combines P1’s action with his private information:

ln

(
a2

1− a2

)
= ln

(
a1

1− a1

)
+ ln

(
s2

1− s2

)
= ln

(
s1

1− s1

)
+ ln

(
s2

1− s2

)
• Interpretation: since agents share a common prior, P2 can adopt P1’s

posterior as his own prior before incorporating his private signal;

• That’s why P3 does not benefit from observing P1 if P2 is seen;

• In general: ln(at/(1− at)) =
∑

τ≤t ln(sτ/(1− sτ ))

• Behaviorally: ln(at/(1− at)) = ln(at−1/(1− at−1)) + ln(st/(1− st))

• A note on t’s unbounded likelihood ratio and continuum of actions.

Bayesian log odds
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BRTNI neglect their predecessors’ inferences:

• P1 is not effected (no inference involved);
• P2 correctly infers P1’s signal from her action (typical BNE):

ln
(

a2
1−a2

)
= ln

(
a1

1−a1

)
+ ln

(
s2

1−s2

)
= ln

(
s1

1−s1

)
+ ln

(
s2

1−s2

)
• P3 neglects how P2 incorporates P1 signal into his action:

ln
(

a3
1−a3

)
= ln

(
a1

1−a1

)
+ ln

(
a2

1−a2

)
+ ln

(
s3

1−s3

)
= ln

(
s1

1−s1

)
+
(
ln
(

s1
1−s1

)
+ ln

(
s2

1−s2

))
+ ln

(
s3

1−s3

)
= 2 ln

(
s1

1−s1

)
+ ln

(
s2

1−s2

)
+ ln

(
s3

1−s3

)
• Generally:

ln

(
at

1− at

)
=

[∑
τ<t

2t−1−τ ln
(

sτ
1− sτ

)]
+ ln

(
st

1− st

)

Comparison with simple algebra
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• BRTNI play allows a failure of learning of true state even with
unbounded signal strength and arbitrary large number of Ps:

In BRTI play, for each r < 1, there exist δ > 0, such that:
Pr[at > r ,∀t|ω = 0] > δ

(P3)

• Even when ω = 0 it is possible that BRTNI in an infinite sequence
chooses and action that exceeds any given threshold;

• If the first couple of agents receive signals high enough to take actions
above r , then with positive probability no agent ever takes an action
below r ;

• Driven by the speed of forming a believe that ω = 0 is a true state.

Proof of P3
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• Unlike rational beliefs, BRTNI beliefs do not form a martingale:
• When public belief Pt > 1/2, then E [Pt+1|Pt ] > Pt

• When public belief Pt < 1/2, then E [Pt+1|Pt ] < Pt

• Beliefs drift in this predictable way because BRTNI players in future
periods reweigh information already contained in current beliefs and
become fully confident in the wrong state:

BRTI actions and beliefs converge almost surely to 0 or 1 (P4)

Proof of P4
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Simulations with fo(s) = 2(1− s) and f1(s) = 2s (when ω = 1)

notes:

• likelihood that both types P2 take a low action is ' 0.006;
• RP3 likely than not chooses a higher action than RP2 since when ω = 1 most signals move posteriors in that

direction. Indeed, for RP2 and RP3 take low actions is similar;
• NP3, however, three times as likely as their predecessors to choose a low action;
• intuitively, because they interpret NP1 and NP2 low actions as two strong and independent pieces of evidence

in favor of ω = 0;
• only very high signals can swing actions above 0.05;
• when ω = 1 NPs converge to a = 0 with ' 11%, while it occur with RPs only ' 2%;
• there is 99.7% chance of NP10 taking a ≤ 0.05 and a > 0.95 (against 93.8%). 14



• BRTNI play converge on the wrong limiting action with positive
probability ((P3) and (P4));
• On contrary rational players almost surely converge on the right action;

• Another interesting feature is that rational players always benefit on
average from observing, while BRTNI may not;
• If expected cost of overconfidence exceeds the added information in

others’ actions;

• gk(ak , ω) = −(a− ω)2n, higher n more costly it is to chose action
distant from the true state;

• Belief are n invariant and wrong limiting action is reached 11 (= 1/9)%

of time;

• A long-run average payoff is −(1)2n = −1× 1/9 = −1/9;

• A lower bound on average payoff is −(1/2)2n, so if n = 1 learning is
good, while for n ≥ 2 not so much, since −(1/2)2n ≥ −1/9.
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Eyster and Rabin (2010)

III: Harmful Learning with Long-Run
Agents



• People may choose actions repeatedly;

• Consider:
• Player {A,B,C} move in sequence A,B,C ,A,B,C ,A . . .;
• Each player’s growing collection of private signals almost surely reveals

the state;
• Rational and naive would choose the right action if acted solely, yet...

Suppose that three long-run BRTNI players {A,B,C}
move in sequence A,B,C ,A . . .Then for each r ∈ (0, 1)
there exist δ > 0 such that

Pr
[(

at
1−at

)
> et

(
r

1−r

)
, ∀t|ω = 0

]
> δ

(P6)

• When ω = 0, for r > 1/2, it happens that all long-run BRTNI players
play actions above r and converge to certain beliefs that ω = 1.

Proof of P6
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Hurray! We are done!
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Banerjee (1992)

I: A Simple, General Cascade Model



• A simple, cascade model consists of:
1. States of the world: Pr[G ] = p and Pr[B] = 1− p;
2. Payoffs: reject → 0 or accept → vgp + vb(1− p)(= 0)
3. Signals: q > 1

2 (e.g. more reviews for a better restaurant)

Pr[H|G ] = q ⇔ Pr[L|G ] = 1− q

Pr[L|B] = q ⇔ Pr[H|B] = 1− q

States
B G

Signals
L q 1− q

H 1− q q

back to general model
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• Individual decision:
• A high signal shifts expected payoff:

vg Pr[G ] + vb Pr[B] = 0→ vg Pr[G |H] + vb Pr[B|H]

Pr[G |H] = Pr[G ]·Pr[H|G ]
Pr[H]

= Pr[G ]·Pr[H|G ]
Pr[G ]·Pr[H|G ]+Pr[B]·Pr[H|B]

= pq
pq+(1−p)(1−q) > p∗

• Multiple agents:
• Define S as a set of signals with a high and b low signals then:

Pr[G |S ] = Pr[G ]·Pr[S|G ]
Pr[S]

= pqa(1−q)b

pqa(1−q)b+(1−p)(1−q)aqb
†

• Implying:
a > (<)b ⇒ Pr[G |S ] > (<) Pr[G ]

a = b ⇒ Pr[G |S ] = Pr[G ]

∗Note that pq + (1− p) < pq + (1− p)q = q
†Replace second term in denominator with (1− p)qa(1− q)b
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Banerjee (1992)

II: Sequential Decision-Making and
Cascades



• Recall that if P1 and P2 made opposite decisions P3 follows
his signal. And future Ps know that;

• If P1 and P2 made the same decision then all do the same;

• If number of acceptance differ from number of rejections by at
most one, person follows the signal;

• But once the difference is bigger, everyone follows the majority;

• The difference won’t stay within (−1, 1) for long:
• Divide N into three consecutive players;
• People in a block receive the same signal with probability:

q3 + (1− q)3

• The probability that none of these blocks consist of the same
signal: (1− q3 − (1− q)3)

N/3

• And goes to 0 as N →∞

back to experiment
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Technical appendix



The Proof of Proposition 1

Let I t = {It = (st ; a1, ..., at−1) : Qt ≥ q}. From Bayes’ Rule,

Pr[ω = 1|I t ] = π

π+(1−π)Pr[I t |ω=0]
Pr[I t |ω=1]

≥ q

⇒ Pr[I t |ω=0]
Pr[I t |ω=1]

≤ π
1−π

1−q
1

Because Pr[I t |ω = 1] ≤ 1, Pr[I t |ω = 0] ≤ π
1−π

1−q
1

back to P1



The Proof of Corollary 2

When public beliefs are that Pr[ω = 1|(at , ..., at−1)] = p, player t with
private belief r takes action at = 1 iff:

Pr[ω = 1|It ] = pr
pr+(1−p)(1−r) ≥

2n−1
2n

p ≥ 1
1+ r

1−r
1

2n−1

Then (P1) with q = 1
1+ r

1−r
1

2n−1
and π = 1

2 gives (C2)

back to C2



Bayesian Updating as a Likelihood Ration (Bayes Factor)

With binary sample space the odds of E are: O(E ) = P(E)
P(E c )

• Think of a flip of a fair coin;
• P(E ) = p ⇒ O(E ) = p/1−p

Bayesian updating – in the language of odds – is prior odds
updated to posterior odds:

Bayes factor = O(H|D) = P(D|H)
P(D|Hc )

= P(D|H)·P(H)
P(D|Hc )·P(Hc )

= P(D|H)
P(D|Hc ) ·

P(H)
P(Hc )

= P(D|H)
P(D|Hc ) · O(H)

posterior odds = Bayes factor× prior odds

Log odds are more convenient in practice:

O(H|D1,D2) = BF2 · BF1 · O(H)

ln(O(H|D1,D2)) = ln(BF2) + ln(BF1) + ln(O(H))back to naivety



The Proof of Proposition 3 (beginning)

Pick r ∈ (1/2, 1), define R = ln(1/(1−r)) > 0, let Pt be a log
likelihood of public belief at period t.

With BRTNI play Pt+1 = 2Pt + ln(St/(1−St))

When ω = 0, with positive probability P2 ≥ 3R

If ln(St/(1−St)) > −tR ∀t then:

P3 = 2P2 + ln(S2/(1−S2)) > 2× 3R − 2R = 4R and
P4 = 2P3 + ln(S3/(1−S3)) > 2× 4R − 3R = 5R, etc.

In general:

Pt > (t + 1)R and so
ln(at/(1−at)) = Pt + ln(St/(1−St)) > (t + 1)R − tR = R

Now...

back to P3



The Proof of Proposition 3 (continuation)

Pr [ln(St/(1−St)) < −tR|ω = 0] < Pr [|ln(St/(1−St))| > tR |ω = 0 ]
‡ < 1/(tR)2E

[
|ln(St/(1−St))|2 |ω = 0

]
Also,

Q ≡ E
[
(ln(S/(1−S)))

2|ω = 0
]

=
1∫
0
(ln(s/(1−s)))

2f0(s)ds

≤ M
1∫
0
(ln(s/(1−s)))

2ds

= M
(
π2/3
)

for M ≡ sup{f0(s) : s ∈ [0, 1]}, which is finite by the continuity of f0

back to P3

‡Markov inequality: Pr[X ≥ a] ≤ E [X ]/a if X is nonnegative r.v and a > 0



The Proof of Proposition 3 (finale)

Define τ = min{t ∈ N : Q < t2R2} so that for each t ≥ τ ,
((t2R2 − Q)/t2R2) ∈ (0, 1), and let C (R) ≡

∏τ−1
t=1 (1− F0(−tR)) > 0.

Pr
[
St/1−St > e−tR , ∀t |ω = 0

]
> C (R)

∏
t≥τ

(t2R2−Q)/(t2R2)

= C (R) exp

{∑
t≥τ

(t2R2−Q)/(t2R2)

}

= C (R) exp

{∑
t≥τ
−Q/zt

}
for zt ∈ (t2R2 − Q, t2R2), by the Mean-Value Theorem. Then,

Pr
[
St/1−St > e−tR ,∀t |ω = 0

]
> C (R) exp

{∑
t≥τ
−Q/t2R2

}

> C (R) exp

{∑
t≥1
−Q/t2R2

}
= C (R) exp {− (Qπ/6R2)} > 0

back to P3



The Proof of Proposition 4

From above, write: 21−tPt =
∑
τ<t

2−τ ln (sτ/1−Sτ)

Since the three series
∞∑
τ=1

E [2−τ ln (S/1−S) |ω = 0 ] = § 2E [ln (S/1−S) |ω = 0 ]
∞∑
τ=1

var [2−τ ln (S/1−S) |ω = 0 ] = ¶ 1/3var [ln (S/1−S) |ω = 0 ]
∞∑
τ=1

var [2−τ ln (S/1−S) |≥ 1 ] = ‖
∞∑
τ=1

4−τvar [ln (S/1−S) |ω = 0 ]

Kolmogorov’s Three-Series Theorem implies that 21−tPt converges a.s.

back to P4

§Follow from finiteness of the second moment (and therefore the first)
¶See above
‖by Chebyshev’s inequality



The Proof of Proposition 6

back to P6



Some Simple Algebra

ln
(

at
1−at

)
≡ At

ln
(

st
1−st

)
≡ St

Rational:

A3 = A1 + S2 + S3

∵ A3 = A2 + S3

A2 = A1 + S2

A1 = S1

Naive:

A3 = A1 + A2 + S3

= S1 + [S1 + S2] + S3

∵ A2 = S1 + S2

Rational player give all signals equal weight, BRTNI overweight early signals, giving
the first signal half of weight of all signals, the second half of what remain etc.

A3 = S1 + S2 + S3 A3 = S1 + S1 + S2 + S3

back to naive inference
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