Beliefs inconsistencies

Sergey Alexeev

UTS
2007

- A 1000 miles long country
- Lauca National Park (for NE; cf. 11-20)
- n resort developers plan to locate a resort somewhere in the coast
- After the resorts are constructed the airport is built at the average of the all locations including Lauca National Park
- Suppose most tourists visit all resort equally often, except for lazy tourist who visit only the resorts nearest to the airport
- The developers who located closest to the airport get a fixed bonus of fixed visitors
- Where should the developers locate to be nearest to the airport?
- Game theoretical prediction is that all developers should locate exactly near Lauca National Park.
- The answer requires at least 1 attraction
- Independent from fraction of lazy tourists and number of developers
- Label the coastline starting from the Lauca National Park with miles
- Park is at 0
- Developers chose from 0 to 1000
- $\quad x_{1}, x_{2}, x_{3}, x_{4}, \ldots, x_{n}$
- $A=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n+m}=\frac{n}{(n+m)} \bar{x}=p \bar{x}$, is the average location
- \quad where $p \leq 1$ since $m \geq 1$
- The developer closest to $A=p \bar{x}$ wins those lazy tourists
- No matter where the average of other developers' location is, a developer wants to locate between that average and the Park
- Which is where the airport will be built
- This desire draws all the developers toward exactly where the Park is
- The solution is reached by iterated application of dominance
- The largest possible value of A is $1000 p$
- Any choice of x above $1000 p$ is dominated by choosing $1000 p$
- If a developer believes that others obey dominance and, thus, choose $x_{i}<1000 p$, then the largest A is $1000 p^{2}$
- Any choice larger than that is dominated and so on
- Games assume mutual rationality and mutual consistency
- What others might do $\stackrel{\text { ? }}{->}$ your beliefs -> your act
- Example above (Ho et al, 1998) belongs to "p-beauty contests" class of games
- Favourable to study the depths of players' reasoning
- Other examples
- Newspaper competition (Keynes, 1936) ($p=1$)
- Investors choose the time and the crash is when everyone else sell
- Investor want to sell closest to the crash, but not too far ahead
- Guessing game (Moulin, 1986)
- Unravelling happens naturally when timing of transaction matters
- Contracting medical students from the first year
- No distinction can be made and unstable matching results

If x is from 0 to 100

- then $50 p^{n}$, where n is a degree of being strategic
- 1 order strategy corresponds to Cournout
- 0 salient or random number

Experiment with $\mathrm{n}=15-18$
4 session per p with facilitated learning

Choices in the first period:
A) Sessions 1-3 $\quad\left(p=\frac{1}{2}\right)$
B) Sessions 4-7 $\quad\left(p=\frac{2}{3}\right)$
C) Sessions 8-10 $\left(p=\frac{4}{3}\right)$

-50 is a reference
-Neighbourhood intervals of $50 p^{n}$ $-50 p^{n+1}$ and $50 p^{n}$ interim intervals
-Geometric mean determines the boundaries E.g. for $p=\frac{1}{2}$ the NI 50, 25, 12.5, $6.25,3.25,1.65$ $\sqrt[6]{502512.56 .253 .251 .65} \approx 9$

Relative frequencies of choices in the first period according to the interval classification with reference point 50:
A) Sessions 1-3 ($p=\frac{1}{2}$)
B) Sessions 4-7 $\quad\left(p=\frac{2}{3}\right)$
C) Sessions 8-10 $\left(p=\frac{4}{3}\right)$

Table 1 -Means and Medians of Periods 1-4, and Rate of Decrease from Period 1 to Period 4

A. Sessions with $p=1 / 2$:								
Period	Session 1			Session 2			Session 3	
	Mean		Median	Mean	Median		Mean	Median
1	23.7		17	33.2	30		24.2	14
2	10.9		7	12.1	10		10.2	6
3	5.3		3	3.8			2.4	2.1
4	8.1		2	13.0			0.4	0.33
Rate of decrease: ${ }^{\text {a }}$	0.66		0.88	0.61	0.98		0.98	0.97
B. Sessions with $\boldsymbol{p}=2 / 3$:								
Period	Session 4		Session 5		Session 6		Session 7	
	Mean	Median	Mean	Median	Mean	Median	Mean	Median
1	39.7	33	37.7	35	32.9	28	36.4	33
2	28.6	29	20.2	17	20.3	18	26.5	20
3	20.2	14	10.0	9	16.7	10	16.7	12.5
4	16.7	10	3.2	3	8.3	8	8.7	8
Rate of decrease: ${ }^{\text {a }}$	0.58	0.7	0.92	0.91	0.75	0.71	0.76	0.76

Table 2-Relative Frequencies and Areas of Periods 2-4 According to the Step-Model for Aggregated Data

Classification	Period 2		Period 3		Period 4	
	Relative frequency	Area	Relative frequency	Area	Relative frequency	Area
A. Sessions $1-3(p=1 / 2)$:						
Higher steps	4.2	2.4	4.2	1.0	20.8	0.3
Step 3	25.0	2.4	12.5	1.0	22.9	0.3
Step 2	31.3	4.9	60.4	2.0	29.2	0.7
Step 1	27.0	9.6	12.5	3.9	14.5	1.4
Step 0	2.1	7.9	4.1	3.2	4.2	1.1
Above mean $_{\text {t-1 }}$	10.4	73.0	6.3	88.9	8.3	96.2
All	100.0	100.0	100.0	100.0	100.0	100.0
B. Sessions 4-7 $(\boldsymbol{p}=2 / 3)$:						
Higher steps	7.5	8.9	1.5	5.8	7.5	3.8
Step 3	11.9	4.4	17.9	2.9	25.3	1.9
Step 2	31.3	6.7	46.2	4.3	47.8	2.9
Step 1	20.9	10.0	16.4	6.5	10.4	4.3
Step 0	14.9	6.7	7.5	4.4	3.0	2.9
Above mean $_{t-1}$	13.4	63.3	10.5	76.1	6.0	84.1
All	100.0	100.0	100.0	100.0	100.0	100.0

Adjustment process

- a - adjustment parameter
- The relative deviation from the mean (reference point) of the previous period
In words, if he observed that his chosen number was above p-times the mean in the previous period (i.e., his adjustment factor was higher than the optimal adjustment factor), then he should decrease his rate; if his number was below p times the mean (i.e., his adjustment factor was lower than the optimal adjustment factor), he should increase his adjustment factor

$$
\begin{gather*}
a_{t t}=\left\{\begin{array}{ll}
\frac{x_{t t}}{50} & \text { for } t=1 \\
\frac{x_{t t}}{(\text { mean })_{t-1}} & \text { for } t=2,3,4
\end{array} \quad \Rightarrow \quad a_{\mathrm{opp}, t}=\left\{\begin{array}{c}
\frac{x_{\mathrm{opt}, t}=\frac{p \times(\text { mean })_{t}}{50}}{50} \\
\text { for } t=1 \\
\frac{x_{\mathrm{opt}, t}}{(\text { mean })_{t-1}}=\frac{p \times(\text { mean })_{t}}{(\text { mean })_{t-1}} \\
\text { for } t=2,3,4 . \\
\text { if } a_{t}>a_{\mathrm{opt}, t} \Rightarrow a_{t+1}<a_{t} \\
\text { if } a_{t}<a_{\mathrm{opp}, t} \Rightarrow a_{t+1}>a_{t} .
\end{array}\right.\right.
\end{gather*}
$$

Some notes

- Inspired QRE
- McKelvey et al 1995
- And cognitive hierarchy model of games
- Camerer et al 2004
- And tons of other stuff
- Nagel was the first to mention Keynes observation

