Beliefs inconsistencies

Sergey Alexeev

UTS 2007

- A 1000 miles long country
 - Lauca National Park (for NE; cf. 11-20)
- n resort developers plan to locate a resort somewhere in the coast
 - After the resorts are constructed the airport is built at the average of the all locations including Lauca National Park
- Suppose most tourists visit all resort equally often, except for lazy tourist who visit only the resorts nearest to the airport
 - The developers who located closest to the airport get a fixed bonus of fixed visitors
- Where should the developers locate to be nearest to the airport?
- Game theoretical prediction is that all developers should locate exactly near Lauca National Park.
 - The answer requires at least 1 attraction
 - Independent from fraction of lazy tourists and number of developers ²

- Label the coastline starting from the Lauca National Park with miles
 - Park is at 0
 - Developers chose from 0 to 1000
 - $x_1, x_2, x_3, x_4, \dots, x_n$

•
$$A = \frac{x_1 + x_2 + \dots + x_n}{n+m} = \frac{n}{(n+m)}\bar{x} = p\bar{x}$$
, is the average location

- where $p \le 1$ since $m \ge 1$
- The developer closest to $A = p\bar{x}$ wins those lazy tourists
- No matter where the average of other developers' location is, a developer wants to locate between that average and the Park
 - Which is where the airport will be built
 - This desire draws all the developers toward exactly where the Park is
- The solution is reached by iterated application of dominance
 - The largest possible value of A is 1000p
 - Any choice of x above 1000p is dominated by choosing 1000p
 - If a developer believes that others obey dominance and, thus, choose $x_i < 1000p$, then the largest A is $1000p^2$
 - Any choice larger than that is dominated and so on

• 0

- Games assume mutual rationality and mutual consistency
 - What others might do -> your beliefs -> your act
- Example above (Ho et al, 1998) belongs to "p-beauty contests" class of games
 - Favourable to study the depths of players' reasoning
- Other examples
 - Newspaper competition (Keynes, 1936) (p=1)
 - Investors choose the time and the crash is when everyone else sell
 - Investor want to sell closest to the crash, but not too far ahead
 - Guessing game (Moulin, 1986)
- Unravelling happens naturally when timing of transaction matters
 - Contracting medical students from the first year
 - No distinction can be made and unstable matching results

Choices in the first period: A) Sessions 1-3 $(p = \frac{1}{2})$ B) Sessions 4-7 $(p = \frac{2}{3})$ C) Sessions 8-10 $(p = \frac{4}{3})$

step 1

step 0

45-50

38-44

step 2

В.

51-100 interim inter

neighborhood

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

<13

13-16

Relative Frequencies

-50 is a reference -Neighbourhood intervals of $50p^n$ - $50p^{n+1}$ and $50p^n$ interim intervals -Geometric mean determines the boundaries E.g. for $p = \frac{1}{2}$ the NI 50, 25, 12.5, 6.25, 3.25, 1.65 $\sqrt[6]{50}$ 25 12.5 6.25 3.25 1.65 ≈ 9

Relative frequencies of choices in the first period according to the interval classification with reference point 50:

A) Sessions 1-3
$$(p = \frac{1}{2})$$

B) Sessions 4-7 $(p = \frac{2}{3})$
C) Sessions 8-10 $(p = \frac{4}{3})$

26-29

30-37

20-25

Period	Session 1		Session 2		Session 3	
	Mean	Median	Mean	Median	Mean	Median
1	23.7	17	33.2	30	24.2	14
2	10.9	7	12.1	10	10.2	6
3	5.3	3	3.8	3.3	2.4	2.1
4	8.1	2	13.0	0.57	0.4	0.33
Rate of decrease: ^a	0.66	0.88	0.61	0.98	0.98	0.97

TABLE 1-MEANS AND MEDIANS OF PERIODS 1-4, AND RATE OF DECREASE FROM PERIOD 1 TO PERIOD 4

A. Sessions with $p = \frac{1}{2}$:

B. Sessions with $p = {}^{2}I_{3}$:

	Session 4		Session 5		Session 6		Session 7	
Period	Mean	Median	Mean	Median	Mean	Median	Mean	Mediar
1	39.7	33	37.7	35	32.9	28	36.4	33
2	28.6	29	20.2	17	20.3	18	26.5	20
3	20.2	14	10.0	9	16.7	10	16.7	12.5
4	16.7	10	3.2	3	8.3	8	8.7	8
Rate of decrease: ^a	0.58	0.7	0.92	0.91	0.75	0.71	0.76	0.76

	Period 2		Period 3		Period 4	
Classification	Relative frequency	Area	Relative frequency	Area	Relative frequency	Area
A. Sessions 1–3	(p = 1/2):					
Higher steps	4.2	2.4	4.2	1.0	20.8	0.3
Step 3	25.0	2.4	12.5	1.0	22.9	0.3
Step 2	31.3	4.9	60.4	2.0	29.2	0.7
Step 1	27.0	9.6	12.5	3.9	14.5	1.4
Step 0	2.1	7.9	4.1	3.2	4.2	1.1
Above mean _{t-1}	10.4	73.0	6.3	88.9	8.3	96.2
All	100.0	100.0	100.0	100.0	100.0	100.0
B. Sessions 4–7	$(\boldsymbol{p}={}^{2}\boldsymbol{I}_{3}):$					
Higher steps	7.5	8.9	1.5	5.8	7.5	3.8
Step 3	11.9	4.4	17.9	2.9	25.3	1.9
Step 2	31.3	6.7	46.2	4.3	47.8	2.9
Step 1	20.9	10.0	16.4	6.5	10.4	4.3
Step 0	14.9	6.7	7.5	4.4	3.0	2.9
Above mean _{t-1}	13.4	63.3	10.5	76.1	6.0	84.1
All	100.0	100.0	100.0	100.0	100.0	100.0

TABLE 2-RELATIVE FREQUENCIES AND AREAS OF PERIODS 2-4 ACCORDING TO THE STEP-MODEL FOR AGGREGATED DATA

Adjustment process

- a adjustment parameter
 - The relative deviation from the mean (reference point) of the previous period

In words, if he observed that his chosen number was above p-times the mean in the previous period (i.e., his adjustment factor was higher than the optimal adjustment factor), then he should <u>decrease</u> his rate; if his number was <u>below p</u> <u>times the mean</u> (i.e., his adjustment factor was lower than the optimal adjustment factor), he should increase his adjustment factor

$$a_{tt} = \begin{cases} \frac{x_{tt}}{50} & \text{for } t = 1 \\ \frac{x_{tt}}{(\text{mean})_{t-1}} & \text{for } t = 2, 3, 4 \\ & \text{if } a_t > a_{\text{opt},t} \Rightarrow a_{t+1} < a_t \\ & \text{if } a_t < a_{\text{opt},t} \Rightarrow a_{t+1} > a_t. \end{cases} = \begin{cases} \frac{x_{\text{opt},t}}{50} = \frac{p \times (\text{mean})_t}{50} \\ & \text{for } t = 1 \\ \frac{x_{\text{opt},t}}{(\text{mean})_{t-1}} = \frac{p \times (\text{mean})_t}{(\text{mean})_{t-1}} \\ & \text{for } t = 2, 3, 4. \end{cases}$$

Some notes

- Inspired QRE
 - McKelvey et al 1995
- And cognitive hierarchy model of games

- Camerer et al 2004

• And tons of other stuff

- Nagel was the first to mention Keynes observation